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Abstract

Let A be a unital C*-algebra. For a in A, let ad4 a denote the inner derivation induced on A by a,
and let d(a, Z (A)) denote the distance from a to the centre of A. Define K (A4) and K, (A) to be
the least elements of [0, oo] such that, for all a in A,

d(a,Z (4)) < K (4) [lada af

and, for all a in Ag,,
d(a,Z (A)) < K, (A) [[ada al -

An exposition of Dr Somerset’s investigation of these constants is given. In particular, a theorem
connecting the values of K (A) and K (A4) to certain intersection properties of the primitive ideals
of A is proved. The connection between this work and related results is briefly discussed.
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Chapter 1

Introduction

Let A be an algebra. A linear map D from A to A is said to be a derivation if, for all ¢ and b in
A, it satisfies the Leibnitz equation

D (ab) =D (a)b+aD (D).
For a in A, define the adjoint map ad4 a from A to A by
(ady a) (b) = [a,b] = ab—ba

for all bin A. It is easy to check that ad4 a is a derivation. Derivations of this form are known as
inner derivations.
Let A be a Banach algebra. Then, for all ¢ and b in A,

I(ada a) ()] = llab — bal| < 2 la] |[b]| .

Hence ad 4 a is bounded and
lada all < 2a

for all a in A. Let d (a, Z (A)) be the distance from a to the centre Z (A) of A. For zin Z (A), ada a
equals ad4 (a + z). Thus, for all a in A,

llada al| < 2d(a, Z (A)) (1.1)

In [33], Stampfli showed that, when A is a primitive unital C*-algebra, equality holds in 1.1 for
all @ in A. In particular, equality holds when A is B (H), the C*-algebra of bounded operators on
a Hilbert space H. The results of [33] are essential for the further development of the theory, so an
exposition is given in Chapter 3. Zsid6 used the work of Stampfli in [36] to show that equality holds
in 1.1 when A is a von-Neumann algebra. In [31], Somerset generalised Zsid4’s result. The details
are given in Chapter 6.

However, there are C*-algebras where the inequality 1.1 is strict. To study the inequality further,
Archbold [3] introduced the constants K (A) and K (A), defined to be the least elements of [0, co]
such that, for all a in A,

d(a, 7 (4)) < K (A) [adaal
and, for all @ in Ag,,
d(a,Z (A)) < K, (A) |ladaall,
where A is a C*-algebra and Ay, is its self adjoint part. Additional constants can be analogously

defined for other subsets of A. We see that, for all a in A,
d(a, Z(A) <d(}(a* +a), Z(4) +d (3 (a* —a), Z(A))

<K, (A) |ada L (0" + )| + K, (4) |Jada £ (a* — a)]|
< 3K (A) (2]ladaa”| + 2 [lada al])

2
2K (A) ||lada al| -



Therefore,
0< K, (A) <K(A) <2K,(A).

Since A, linearly generates A, if K (A) is zero, A is commutative. If A is non-commutative then
there exists a in A such that

0 < |ladaall < |lada § (a* +a)|| + ||ada § (a* — a)]|,
and hence ||ad 4 b|| is non-zero for some b in Ag,. Furthermore,
llada bl < 2d (b, Z (A)) < 2K, (A) [ladadl],

and
K(A)>K;(A) >

1
5

Clearly, when A is a non-commutative C*-algebra, K (A) and K, (A) have the value % if and
only if equality holds in 1.1 for all a in A or for all a in A, respectively. It was shown by Kadison,
Lance and Ringrose in [18], Theorem 5.3, that the set of inner derivations of A is norm closed in
the set of derivations of A if and only if K (A) is finite. Archbold [3] studied the stability of K (A)
and Archbold [3] and Batty [8] investigated K (A ®3 B) where A ®g B is a C*-tensor product of
C*-algebras A and B. In [32], Somerset showed that K, (A) is always of the form %, for some natural
number n, or infinity. These results are described in more detail in Chapter 6.

In this paper we give an exposition of Somerset’s work ([30], [31], [32]) on characterising C*-
algebras by the values of K (A) and K (A). For simplicity, attention is restricted to the unital case.
The reader is assumed to be familiar with basic C*-algebra definitions and facts, such as might be
given in a first course.

In the second chapter of this paper we review some standard facts about representations of a
unital C*-algebra A. We introduce Spec A, the spectrum of A, and Id A, the set of closed two-sided
ideals of A. The subsets Prim A, Glimm A and Primal A of Id A are defined and some of their
topologies discussed. A new, easy proof of Proposition 4.5 of [4] is given (Proposition 2.9).

In the third chapter we give an exposition of the main results of [33]. It is shown that each element
a of A has a closest scalar A (a) which satisfies the Pythagorean relation for operators (Theorem
3.4). The proof given is a modification of the proof in [33] and does not seem to have been given
before. The circumcircle of the spectrum is introduced and used, with the functional calculus, to
find A (a) and ||la — A (a)|| for particular a. These examples are used in later proofs. An expression
for ||ad4 a|| when A is primitive is given (Theorem 3.8) and an important formula for d (a, Z (A)) is
found (Theorem 3.11).

In the fourth chapter the pure functionals of A and a numerical range U4 (a), introduced in [30],
are discussed. Inequalities connecting A (a) and the circumcentre of Uy (a) are proved (Lemma 4.5)
and an important expression for ||ad 4 a|| is given (Proposition 4.4).

In the fifth chapter the results built up in the previous sections are used to prove the main
characterisation theorem (Theorem 5.7). We see that, for a unital C*-algebra A, the possible values
of K (A) and K, (A) fall into four cases:

(i) K(A)=Ks(A)=0;

(ii) K (A4) =K, (4) = 3;
(it) K (A) = L, K. (A) = &;
(iv) K (A) > K, (A) > 1.

The cases are characterised by certain intersection properties of the primitive ideals of A.
In the sixth chapter we present a brief review of other results on Archbold constants, which are
of relevance to this paper.



Chapter 2

Preliminaries

In this chapter we present a brief review of some well known facts about representations of unital
C*-algebras. For a more detailed presentation, see, for example, [19], [23] or [27]. We then introduce
the spaces Spec A, Prim A and Glimm A and some of their topologies.

The set of all closed two-sided ideals of a unital C*-algebra A is denoted by Id A. We will follow
convention and use the word ideal to mean a closed two-sided ideal. It can be shown that every
element of Id A is a C*-subalgebra of A and contains an approximate unit, see [23], Theorems 3.1.1
and 3.1.3.

A representation of a unital C*-algebra A is a pair (7, H), where H is a Hilbert space and  is
a *-homomorphism 7 : A — B (H). If 7 is injective then the representation is said to be faithful.
If £ is an element of H such that 7 (A) ¢ is dense in H, then the representation is said to be cyclic
with cyclic vector &. Let m(A)' be the commutant of 7 (A), that is the set of elements of B (H)
which commute with every element of 7 (A). Then (m, H) is said to be irreducible if 7 (A) is the
set of scalar multiples of 1. The set of non-zero irreducible representations of A is denoted Irr A.

The set 7 (A) is the image of a *-homomorphism and 7 (A4)" is a norm-closed *-subalgebra. Hence
both are C*-subalgebras of B (H). If (w, H) is cyclic, m (1) is the identity on 7 (4) ¢ and hence on
H. As for any *-homomorphism, || (a)|| < |al|.

Let « be an element of the state space S4 of A. It is easy to check that the set

L,={be A:x(b"d) =0}
is a closed left ideal of A, and that, for all a and b in A,
(a+ Ly, b+ L) =z (b*a)

is a well-defined inner product on A/L,. Let H, be the completion of A/L, and let 7, (a) denote
the unique extension of the well-defined map b+ L, — ab+ L, to H,. Then 7, (a) is an element of
B(H,) and 7, : a — 7, (a) is a *-homomorphism. Thus (7., H) is a representation of A. Denote
14+ L, by &.. Then &, is a cyclic vector of unit norm and z is recovered by the expression

z(a) = (m, (@) &y &0)

for a in A. The representation (7., H;) is called the Gelfand-Naimark-Segal or GNS represen-
tation.
Let (7, H) be a representation of A. For ¢ in H, define we in B (H)" by

we (T) = (T€,¢)

for T in B (H). Recall that T is a positive element of a C*-subalgebra of B (H) if and only if (T¢, )
is positive for all £ in H, [19], Theorem 4.2.6. Thus, we¢|(4) is an element of (A)*+ If £ is of norm
1 and (7, H) is cyclic then we lies in the unit ball, 1z lies in 7 (A) and we (15) is 1. Hence, we|r(a)
is a state of m (A). Such an element of Sy (4) is said to be a vector state of 7 (A).

Let 0.5 4 be the set of pure states of A. The following proposition may be found in [19], Theorem
10.2.3.



Proposition 2.1. Let x be an element of Sa. Then (m,, H;) is an element of Irr A if and only if
x is an element of 0.S 4.

Proof. Suppose that z is an element of 9,54. Let S be a positive element of the unit ball of 7, (A)".
Since (7, H,) is cyclic and &, has norm 1, it follows that z = we, |, (4) is a vector state of 7, (A).
Let y be the element of 7, (A)i given by

Y= ws%fm |wz(A)-

For T in m, (A),, the commutivity of Sz and T2 implies that:

y(1) = ||sirie | < |5t < z(T)

frie.

Thus y and z — y lie in 7, (A)), and it follows that there exist states 1 and x5 of 7, (4), and

positive real numbers a; and as, such that
Yy =a12y, 2 =Y = a222.
Since 1y lies in 7, (A4), we may evaluate z = a1x1+azx2 at 1y to find that a1 a9 = 1. Furthermore,

20Ty (a) = <7rac (a) 517§w> = x(a),

and
x=ay(r10m;) +az(za0my).

We also have that z; o m, lies in S4, because ||z; o 7| < 1 and
T O Ty (1) = T; (1H) =1.

Since z is pure it follows that y = a;z. For P and @ in 7, (A),

(SPE., Q&) = (Q"PSHE,, S1¢, )

=y(Q"P)
=a1z2(Q*P)
= a1 (P&, Q)

Hence S coincides with a11p, on 7 (A)&,. Since 7 (A) &, is dense in H, we have that S is a scalar
/

multiple of 1z. Finally, the positive elements of the unit ball of 7, (A)" linearly generate 7, (A)’,
which implies that 7, (A)/ is Cly.
Conversely, suppose that (m;, H;) is irreducible. Assume that

x=tx;+ (1 —1t)xz
for some x7 and x2 in S4 and ¢ in (0,1). Define o : 7 (A) &, x 7 (A) & — C by
0 (a2 () &, 7o (b) &) = t1 (b7 )
for @ and b in A. Since

tzy (b*a)|® < tay (a*a) oy (b°D)
<z (a*a)x (b*b)
= || (@) &I [|7a () &>

we see that o is well defined and

o (€, < [I€lHIml]



for all £ and 7 in 7, (A)&,. Thus o is continuous in each variable. It is also sesquilinear. Then for
& and 9 in 7, (A) &, the map & — o (£, 7) is a linear functional. Extending to H, and applying the
Riesz representation theorem shows that, for each 1 in 7, (A) £, there exists a unique ¢, in H, such
that [[¢y[| < [|n[| and

o (&m) = (& )
for all £ in 7, (A)&,;. Define T : 7, (A) &, — H, by

Tn= ¢,
for n in 7, (A)&;. Then T is bounded and

o (&n) =& Tn)

for all £ and 7 in 7, (A) §,. By the uniqueness of (;, we see that T is linear on 7, (A4) &;. Thus, we
may extend T" to an element of B (H). Since x; lies in A%, it is self-adjoint. Thus, for a and b in A,

o (7 (b) &, T2 (@) §2) =ty (a*b)
=tz (b*a)
=0 (71—90 (a) fza T (b) fz) .

Hence, for all £ and 7 in 7, (A) &,,

<T*£’ 77> = <§7T77> = <T€777> .

By continuity this expression holds for all 7 in H, and it follows that T is self-adjoint on 7, (A) &,
and hence on H,. Let a, b and ¢ be elements of A. Then

((m (@) T — Ty (@) mo (b) Euy o (€) §2) = (7 (B) &uy Tz (@) Ei)
- <7Tw (ab) §ay Ty (C) ‘Ew>
= txy (c*ab) — tx1 (c*ab)
=0.

Therefore, using continuity again,
(2 (@) T = Tz (a)) §,m) = 0
for ¢ in 7, (A) €&, and 1 in H,. It follows that, for all a in A,
7 (@) T =Tm, (a).
Thus T is in 7 (A)/Sa and, by hypothesis, T'= Al for some A in R. Thus
txy (b*a) = Az (b*a).

When b is equal to 1
try (a) = Az (a)
for all a in A. Evaluating when a is 1 then shows that A equals ¢ so that z; agrees with x. Thus «

is pure. O

Proposition 2.1 shows that there exists a map Z : 9,54 — Irr A given by & — (7, Hy).

Let Hy, Hy be Hilbert spaces. An element U in B (H;, Hs) is said to be unitary if U is a surjective
isometry. Representations (71, H1) and (ma, Hs) are said to be unitarily equivalent if there exists a
unitary U in B (Hy, H3) such that, for all a in A,

9 (G)U: U7T1 (a)



Unitary equivalence is clearly a reflexive and transitive relation. To see that it is symmetric, note
that [|[U&y|| = ||&1|| implies that (&, (U*U — I) &) is zero for all & in H;. By [22], Lemma 3.9-3 (b),
U*U is the identity, and, with surjectivity of U, this implies that UU* is also the identity. Hence
U* is unitary, and, for all £; in H; and & in Ho,

(m1(a) U"€2,61) = (§2,Um (a”) &1)
= (&2, m2 (a") U&1)
= (U*mz (a) &2,&1) -

Therefore m (a) U* equals U*mg (a) for all a in A.

Define the spectrum of A, denoted Spec 4 or A, to be the set of unitary equivalence classes of
Irr A. Then there exists a mapping p~ o 2 : 0.54 — Spec A where py, is the quotient map. We will
now show that ps o = is surjective.

Lemma 2.2. Let (w, H) be an irreducible representation. Let V be a closed subspace of H, invariant
under w. Then V is zero or H.

Proof. Since V is a closed subspace, H =V @ V=*. Let p be the natural projection onto V. For any
n in V+ we have

(m(a)n, &) = (n,m(a") &) =0

for all @ in A and hence V= is m-invariant. Since

p(a) (&1 +&2) =7 (a)&s
m(a)p (&1 +&2)

for all @ in A, & in V and & in V4, p lies in 7 (a)’. This implies that
p=p°=Apg.

Thus, A (A — 1) is zero and p is zero or the identity. Therefore V is zero or H since p coincides with
the identity on V. 0

Corollary 2.3. Let (w, H) be an element of Irr A. Then every non-zero element of H is a cyclic
vector.

Proof. Let £ be an element of H. Then 7w (A)¢ is a subspace of H. If (7w (a,)&) is a sequence,
norm-convergent to 7 in 7 (A4) £, then

I (a)n —m (aan) &]| < [lm (@) In — 7 (an) €]

and the right-hand side converges to zero. Hence 7 (A4) ¢ is m-invariant and 7 (A) § is zero or H. By
linearity and continuity of each 7 (a)

N=(){¢€H:m(a)¢=0}

acA

is a closed vector subspace . Since 7 (a) € is zero for all @ in A and £ in N, and zero lies in N, N is
m-invariant. Then N is zero as 7 is non-zero. Finally, w (A) £ is zero if and only if 7 (A) & is zero, if
and only if £ is zero, so every non-zero ¢ in H is cyclic. O

Theorem 2.4. For each element (7, H) in Irr A, there exists an element x of 0,54 such that (w, H)
is unitarily equivalent to (m,, Hy).

Proof. Since H is non-trivial it has a vector 1 of unit norm. Let x = w, o 7 be a state of A. Define
U:n(A)n — 7 (A) & by
Uw(a)n = Ty (a)gm



for @ in A. Then U is linear and surjective. Furthermore, for all a in A,

U7 (@)n]* = I (a) &
- <7rf€ (a*a) &z £m>
=z (a*a)
=wy o7 (a*a)
= || (a) nll* .
Therefore U is isometric. Since, for all a and b in A,
Un (a) Q0 (b) nN="Tg (a) T (b) o =Tz (a) Ur (b) m,

U (a) equals 7, (a) U. Extending U to H; preserves these properties. Since (m, H) is irreducible,
(7, Hy) is irreducible, and, by Proposition 2.1, z is pure. O

Hence we see that the mapping p~ o = is surjective.
If (71, Hq) and (w2, Hs) are unitarily equivalent and a is an element of ker 7 then

ma(a)éa =ma (a) USs = Uy (a) & =0

which implies that a is also an element of ker mo. By symmetry, ker 71 equals ker mo. Since 7 is a
*_homomorphism, ker 7 is an ideal. Thus there is a well-defined map ker : Spec A — Id A. Define
the primitive spectrum of A denoted Prim A or A to be the range of ker. Elements of Prim A are
said to be primitive ideals and clearly the mapping ker opy,... o Z is surjective. A C*-algebra A is
said to be primitive if {0} is a primitive ideal. Thus, A is primitive if and only if it has a faithful
irreducible representation. Equivalently, primitive C*-algebras are isometrically *-isomorphic to
C*-subalgebras of B (H) with commutant C1, for some Hilbert space H.

Let ker m, be an element of Prim A, where x is an element of 9.S4. Then 7, (a) H,, is zero if
and only if 7, (a) A/L, is zero, if and only if aA is a subset of L,. Therefore,

kermy, ={a€ A:aAC L,}.

Since A is unital, this implies that ker 7, is a subset of L,. If I is an element of Id A and [ is a
subset of L, then
TACTC L,

and hence I is a subset of ker 7.

An ideal I of A is said to be prime if, whenever I; and I5 are ideals of A such that I11s is a
subset of I, then at least one of Iy and I3 is a subset of I. The ideal I is said to be primal if,
whenever I; and I are such that I 15 is zero, at least one of I; and I5 is a subset of I. The set of all
primal ideals of A is denoted Primal A. Clearly A is always prime and every prime ideal is primal.

Suppose that I1Is C kerm, C L, and that I is not a subset of L,. Then 7, (I3) &, is m; (a)-
invariant, (7, H;) is an element of Irr A and 7, (I2) &, is non-zero. Hence 7, (I2) &, is H, by Lemma
2.2 and &, lies in 7, (I2) &,. Since 1115 is a subset of L, it follows that

e (1) §e C o (In) 7o (I2) & = 7o (I1]2) € = {0} .

Therefore 7, (I1) &, is zero and I; is a subset of L,. Thus, if I1I5 is a subset of ker 7., at least one
of I1 and I is a subset of L,, and hence of ker 7,. We conclude that every primitive ideal is prime.
Let a be an element of (I; N I5)" and let (ux)yea be an approximate unit for /;. Then

. 1\ 1
a=1lim (uya2)a?,
b

where uAa% lies in I; and a? lies in I>. Hence a is an element of I;15. This extends linearly to
I, N Iy, implying that I; N I is a subset of I1I5. Clearly I; N I5 is also a superset of 11> and 1115
equals I1 N I for all I; and I in Id A.

If S is a subset of A, define the hull of S, denoted hull S, to be the set of primitive ideals of A
containing S. If X is a subset of Prim A, define the kernel of X, denoted ker X, to be the intersection
of the ideals in X. By convention ker @ is A. Define X to be the set hullker X.



Proposition 2.5. The map taking X to X satisfies the Kuratowski closure axioms:

() 0=0;
(i) X C X;
(i) X = X;

(iv) XUY = XUT;
for all subsets X and Y of Prim A. Hence the set
77 = {Prim A\X : X C Prim A}
is a topology for Prim A.
Proof. The proof is as follows:
(i) @ = hullker § = hull A = 0.

(ii) Let P be an element of X. Then ker X is a subset of P which implies that P lies in hull ker X
But hullker X is X. Therefore X is a subset of X.

(iii) Let P be an element of X. Then P contains ker hullker X and hence ker X. Thus P is an
element of hullker X which is X. Thus X is a subset of X and by (2), X is a subset of X.

(iv) Let P be an element of X. Then P contains ker X UY and therefore P lies in X UY. Hence
X is a subset of X UY . Similarly for Y, so X UY is a subset of X UY. Conversely, let P be
an element of X UY. Then

PDOkerXUY =ker X NkerY = ker X ker Y

Therefore P contains one of ker X and ker Y since P is prime. Thus P is an element of X or
Y so X UY is asubset of X UY.

O

The topology 77 is the Jacobson or hull-kernel topology for Prim A.

Proposition 2.6. Let I be an ideal of a unital C*-algebra. Then
I =kerhullI.

Proof. The result is immediate if I is A. Consider I to be a proper ideal. It is obvious that I is a sub-
set of ker hull /. If a lies in A\I then a; is non-zero and there exists an element x in 9.5, ,; such that
x (ay) is non-zero
([19], Theorem 4.3.8). Then (7, (ar) &z, &) is non-zero, which implies that 7, (as) is non-zero. Let
m = 7, o p; where p; is the quotient map. Then 7 (A) agrees with 7, (A/I) which implies that
(m, Hy) lies in Irr A. Since m (I) is zero, kern lies in hull /. Since 7 (a) is non-zero, a lies in the
complement of ker 7 and hence in the complement of ker hull I. Therefore ker hull I C 1. O

In particular,
ker Prim A = ker hull {0} = {0}

so the kernel of Prim A is zero. We also note that, for I proper, hull I is non-empty.
We now give a characterisation of primal ideals from [5], Proposition 3.2.

Theorem 2.7. Let I be an ideal of a C*-algebra A. Then the following conditions are equivalent:

(i) I is a primal ideal of A;



(ii) whenever n >1 and Ir,...,I, are ideals of A such that I; ¢ I for j =1...n then H?Zl I; is
non-zero;

(iii) whenever n > 1 and Uy, ..., U, are open subsets of Prim A which intersect hull I then ﬂ?zl U;
18 non-empty;

(iv) there is a net (Px)ycp in Prim A convergent to every point of hull I.

Proof. Equivalence of (1) and (2) is immediate from the definitions. Equivalence of (2) and (3) follows
from identifying Id A with the open subsets of Prim A via the bijection I — (hull I)“. Suppose that
(1)-(3) hold. If P is a primitive ideal of A then we can choose an open neighbourhood Up of P in
Prim A (e.g. take Up to be Prim A). Let A be the set of indexed sets (Up) pep ; Such that Up is
proper for only finitely many P in hull I. Define a direction on A by

(UP)penans = (VP)penanr < Up € Vp VP € hulll.

Let (Up) pepun 7 be an element of A. Let Py, ... P, be the elements of hull I such that Up, are proper.
Then P; lies in Up, Nhull I for j = 1...n. By (3) we can choose a primitive ideal Py in ﬂ?zl Up,.
Let () be an arbitrary element of hull I and let Vy be an open neighbourhood of Q. Extend this
to an element Ay of A by defining Vp to be Prim A for P not equal to Q. When A > \g we have
that Py lies in Ug which is a subset of V. Hence (Py),., converges to @ and (4) holds.
If (4) holds and Uy, ..., U, are open subsets of Prim A which intersect hull I then there exists A\g
in A such that Py lies in each U; for A > A\g. Thus (3) holds. O

The following corollary will prove useful.

Corollary 2.8. Let Py,...,P, be elements of Prim A and let I be their intersection. Then the
following conditions are equivalent:

(i) I is a primal ideal of A;
(ii) when Iy,..., I, are ideals of A such that I; € P; for j =1...n then H?Zl I; is non-zero;

(iii) if Uy,...,U, are open meighbourhoods of Pi,..., P, respectively in Prim A then ﬂ?:l Uj is
non-empty.

Proof. The equivalence of (2) and (3) follows from the identification of Id A with the open subsets of
Prim A as above. Suppose that (1) holds, and let Uy, ..., U, be open neighbourhoods of Pi,..., P,
in Prim A. Since each P; is in hull I, (3) of Theorem 2.7 holds. Hence 0?21 U; is non-empty and
(3) holds.
Conversely, suppose that (3) holds. Let Uy, ..., U,, be open subsets of Prim A which intersect
hull I. Observe that
hull I = hullker { Py, ..., P,}

and that hull I is the closure of {Pi,..., P,} in the Jacobson topology. Thus every U; contains an
element of {Py,..., P,}. Define Vi,...,V, by

Vk:ker{Uj:PkGUj,lﬁan}-

Then each Vj, is an open neighbourhood of P, and hence (;_, V. is non-empty. But then (\;_, U;
is non-empty so (2) of Theorem 2.7 holds and thus (1) holds, as required. O

As an immediate consequence of this corollary, we can greatly simplify the proof of [4], Proposition
4.5. A minimal primal ideal is a primal ideal which has no primal proper subsets. An element P
in Prim A is separated if, for ) in the complement of hull P, P and @ can be separated by disjoint
open sets. In [4] the following proposition is proved using nets and facts about two topologies on
Primal A. The proof given here, which I believe is new, is much more elementary.



Proposition 2.9. Let A be a C*-algebra and let P be an element of Prim A. Then the following
conditions are equivalent:

(i) P is a minimal primal ideal of A;
(ii) P is a separated point in Prim A.

Proof. Suppose that P is a minimal primal ideal, but that P is not separated. Then there exists a
primitive ideal @ not in hull P such that P and @ cannot be separated by disjoint open sets. So
PNQ is primal and a proper subset of P, which leads to a contradiction. Therefore (1) implies (2).

Conversely, suppose that P is separated but is not a minimal primal ideal. Then there exists
a proper ideal I of P which is primal. Then hull P is a proper subset of hull I, and there exists
Q@ in hull 7 but not in hull P. By hypothesis, P and @ can be separated by disjoint open sets, so
PNQ is not primal. But PN @ contains a primal ideal, I, and is therefore primal, which leads to a
contradiction. Therefore (2) implies (1). O

Proposition 2.10. Let A be a unital C*-algebra. Then Prim A is compact in the Jacobson topology.

Proof. Let U be an open cover for Prim A and suppose that &/ has no finite subcover. Let C be the
collection of closed sets {Prim A\U : U € U}. Let C4,...,C, be elements of C and let U; be the
complement of C; in Prim A. The intersection of C1, ..., C,, is non-empty, as otherwise {U, ..., Uy}
would be an open subcover for Prim A. Let I be the set ... ker C. We now prove by contradiction
that I is proper. Assume that I is A. Then there exist ay,...,a, in A and C1,...,C, in C such
that a; lies in ker C; and

l=a1+...+ay

This implies that ker C; + ...ker C), is A. Since C1,...,C), have non-empty intersection they have
a common primitive ideal P. Since each C; equals hullker C; we have

PDOkerCy+...kerC,, = A,

which is impossible as primitive ideals are proper. Therefore I is a proper ideal of A and hence is
contained in a primitive ideal ). Then @ contains ker C' for all C' in C and is therefore an element
of each C. Therefore the intersection of C is non-empty. But this contradicts the definition of U as
an open cover for Prim A, so by contradiction Prim A is compact. O

It is easy to check that {kef1 U:Ue TJ} is a topology on Spec A. This topology is called the
Jacobson or hull-kernel topology for Spec A. By construction the mapping ker : Spec A — Prim A
is continuous with respect to the Jacobson topologies and, since it is surjective, it is also open.

Let 0 : 0.54 — Spec A be the natural map defined by

0(x) = [(7z, He)]

for x in 9.54. Then 6 is surjective by Theorem 2.4 and every element of Spec A can be written 6 (z)
for some x in 9.54. We quote the following Lemma, which is the equivalence of (i) and (iv) in [10],
3.4.10.

Lemma 2.11. Let 0,54 have the weak*-topology and let Spec A have the Jacobson topology. Let V
be a subset of Spec A and let U be the set 0=' (V). Then for x in 0cSa and 0 (x) in Spec A, 0 (z)
lies in V' if and only if x lies in U .

With the notation of Lemma 2.11, suppose that V is closed and let = be an element of U. Then
by Lemma 2.11 we have that 6 (z) is an element of V' and hence that z is an element of U. Thus
U is closed. Conversely, suppose that U is closed and let  (x) be an element of V. By Lemma 2.11
again, x lies in U. Then 6 (z) lies in V' which implies that V' is closed. Thus we have shown that a
subset V of Spec A is closed if and only if §=1 (V) is closed. Therefore 6 is continuous.

Now let U be open in 9,54 and let V be the set 6 (U). Suppose that 6 (x) lies in Spec A\V for
some z in U. Then Lemma 2.11 implies that x lies in =1 (Spec A\V). Since 6~ (Spec A\V) is a
subset of 9.54\U, this implies that z lies in 9.54\U, which is a contradiction. Thus Spec A\V is
closed and V' is open so € is an open map.

The following Theorem is the Second Dauns-Hofmann Theorem, see [9]:
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Theorem 2.12. Let A be a unital C*-algebra and let C® (Prim A) be the ring of continuous bounded
functions on Prim A. Then for each a in A and each f in C® (Prim A) there exists an element af
of A such that for all P in Prim A

aé = f(P)ap.

The following corollary to the Second Dauns-Hofmann Theorem was also proved for the unital
case in [9], Chapter III, Section 5, and for the non-unital case in [11]. Our proof follows [11], but
with appropriate simplifications for the unital case.

Theorem 2.13. Let A be a unital C*-algebra. Then there is a *-isomorphism ~v : Z(A) —
C® (Prim A) such that, for all P in Prim A,

hy (P)1n, =m0 (2),

where
h.=v(z)
for each z in Z (A), and where x in 0.S4 is such that P is the kernel of 7.

Proof. Let z be an element of Z (A). Define f, : 3.54 — C by

fo () =2 (2)

for z in 0,S4. Since (7, H,) is irreducible, 7, (z) agrees with Aly_ for some complex number A. In
fact

fo (@) =2 (2) = (72 (2) &0y &) = A
Hence,

Ty (Z) = fz (1‘) 1HI-

If  and y are elements of 0.S4 such that (7, H;) and (7, H,) are unitarily equivalent, then
there exists a unitary U in B (H, Hy) such that, for all a in A,

Ury (a) = my (a)U.
By [24], Proposition 3.13.4, there exists a w in U (A) such that
Uls = my (u) &y
Therefore
z(a) = (7 (a) &, €a)

a) &, Us)
Ty (u) §y» Ty (u) §y>

In particular,

Hence the map g, : Spec A — C given by

9= ([(7a; Hz)]) = f= (x)

is well defined. Clearly f, agrees with g, o 6. Since f, is 2, f, is continuous on 0.S4 with the
weak*-topology and since 6 is open, g, is continuous.

Let « and y be elements of 0,54 such that 7, and 7, have the same kernel. Then 7, (z — f, (z))
is zero and hence m, (z — f. (x)) is zero. Therefore

£ ) ln, — £ @) 1, =0
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and fy, (y) equals f, (x). Hence there is a well defined function h, : Prim A — C given by

h, (kermy) = f. ()

for x in 0.S4. Since g, agrees with h, o ker, the map ker is open and g, is continuous, it follows
that h, is continuous. Furthermore,

|h (ker my )| = | (2)| < [|z]]

so h, is a continuous bounded function on  Prim A. Thus a map
v : Z (A) — C® (Prim A) may be defined by + (z) = h, for z in Z (A). If P is an element of Prim 4,
then for z in 0.5 4 such that P is the kernel of m,, it follows that

h.(P)ly, = f. () 1y, =7 (2).

Since 7, is a *~homomorphism it is easy to check that v is a *-homomorphism.
If v(z1) equals v (z2) then z; agrees with Z3 on 9.54 so x (21 — 22) is zero for all = in 9.54.
Thus z; equals z9 by [19], paragraph 4.3.8. Hence 7 is injective.
Let h be an element of C® (Prim A). By the Second Dauns-Hofmann Theorem there exists z in
A such that
p = h (P) lp

for all P in Prim A. For a in A and P in Prim A,
(az — za)p = h (P)aply, — h(P)1lya, =0p
S0 az — za lies in the kernel of Prim A and is therefore zero. This implies that z lies in Z (A). Since
h. (P)1lh, =72 (2)
when P is the kernel of 7, for some z in 9,54, it follows that h, (P) — z lies in P. Thus
h.(P)lp=zp=h(P)1lp
for all P in Prim A so h = 7 (z). Thus 7 is surjective, which completes the proof. O
Let A be a C*-algebra and let A (A) be the set of characters of A.

Theorem 2.14. Let A be a unital C*-algebra. Then A (A) is a subset of 0.Sa. When A is
commutative A (A) and 0,54 coincide.

Proof. Let x be an element of A (A). Since x is non-zero there exists a in A such that x (a) is
non-zero. Then z (a) (z (1) — 1) is zero and, as for any *-homomorphism, z lies in A7 so z (1) and
|z|| are 1. Hence x is a state. Since z is a *-homomorphism, L, is the kernel of z. For any a in A,
a —x (a) 1 is in the kernel of & so A/L,, is isometrically *-isomorphic to C, as are H, and B (H,).
Thus (7, H;) is irreducible,
Ty (a) =z (a) 1u,

for all a in A, and, by Theorem 2.4, there exists y in 0,54 and a unitary
U:H, — Hy such that, for all a in A,

my (@)U =Uny (a)
Now, for all a in A,

y(a) = (my (@) UUTEy, &)
(Umy (a) U™y, &y)
a(a) (UU"Ey, &)
(a)

=X

12



Thus z is a pure state.
Now suppose that A is commutative and let = be a pure state. Since A is commutative, m, (A)
is a subset of 7, (A)" and hence of the set of scalar operators. Thus, for all ¢ in A,

T (a) = 2 (a) 1u,
and since 7, is a non-zero *-homomorphism it follows that x is. Thus «x lies in A (A). O

In particular we note that A (Z (A)) is 0.Sz(a) for any unital C*-algebra A. For z in A (Z (A))
we denote the proper ideal ker = by I, and define K, to be the norm closure of I,, A. From the proof
above we have that I, is also ker 7, and that Z (A) is the direct sum of I, and the scalars, from
which it follows that I, is a maximal ideal of Z (A). Note that

Prim Z (A) = {I, : 2 € A(Z (4))}.

Let P be a primitive ideal of A. Then there exists y in 9,54 such that P is the kernel of 7. Let
2 be the restriction of y to Z (A). Then, arguing as in the proof of Theorem 2.14 above,

my (2) = 2 (2) 1a,

for all z in Z (A). Hence z is a character of Z (4) and PNZ (A) coincides with I,,. We may therefore
define a map 6 : Prim A — Prim Z (A4) by

0(P)=PNZ(A)
for P in Prim A. Let « be an element of A (Z (A4)). Then
F= () '{z(»)}
z€Z(A)

is a non-empty closed face of S4. By the Krein-Milman Theorem, F' has an extreme point & in 0,54
which extends . Furthermore, 6 (kerm,) equals I, so 6 is surjective. Let C be a closed subset of
Prim Z (A). Then C is the hull of an ideal I of Z (A), with respect to Z (A). Now

0~ (C)={PcPrimA: PNZ(A) DI} =hull.

Hence 67! (C) is closed in Prim A and 6 is continuous.

Let P be a primitive ideal of A. By surjectivity of 8, there exists a character z of Z (A) such
that P N Z (A) coincides with I,. Clearly K, lies in P. Conversely, if K, lies in P for some z in
A(Z (A)), then PN Z (A) contains I,. In fact PN Z (A) equals I, since I, is maximal. Therefore,
if P is a primitive ideal and x is a character of Z (A), then

PnZ(A) =1, PchlkK,
Define a relation =~ on Prim A by
P~Q & f(P)=f(Q) V feCh(PrimA)

where P and @ are primitive ideals. Clearly ~ is an equivalence relation. Let [P] denote the
equivalence class of P in Prim A and let Prim A/ ~ denote the set of equivalence classes.

Let z and y be elements of 9.54 and let P and @) be the kernels of 7, and m, respectively.
Suppose that P ~ @, let z be an element of P N Z (A) and let f be the element of C? (Prim A)
induced by z under the *-isomorphism of Theorem 2.13. Then,

[(P) 1y, =7 (2) =0,

which implies that f (P) and f (Q) are zero. Thus,

Ty (Z) = f (Q) ]-Hy =0,
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which implies that z is an element of @ N Z (A). Therefore PN Z (A) is a subset of @ N Z (A) and,
by symmetry, the sets are equal.

Conversely, suppose that PN Z (A) equals QN Z (A). Let f be an element of C® (Prim A), denote
f(Q) by X and define g to be the element f — X of C? (Prim A). Let z be the element of Z (A) which
corresponds to g under the *-isomorphism of Theorem 2.13. Then
and z is an element of PN Z (A), and hence of @ N Z (A). This implies that

9(P) 1y, = m (2) = 0.
Therefore f has the same value at P and ). Thus we have proved that for P and @ in Prim A,
P~Q & PNZ(A)=QnZ(A).
Therefore, for each P in Prim A, there exists z in A (Z (A)) such that

[Pl={Q ePrimA:QNZ(A) =1}
— hull K,

and, by surjectivity of 6, given x in A (Z (A)), there exists P in Prim A such that [P] is hull K.
Thus,
Prim A

~
~

={hullK, : x € A(Z(A))}.

In particular, [P] is closed in the Jacobson topology for each P in Prim A.
Define the complete regularisation map of PrimA to be the map
¢ : Prim A — Id A, given by
6 (P) = ker [P)

for P in Prim A. The range of ¢ is denoted by Glimm A and its elements are referred to as Glimm
ideals. This terminology arises because

Glimm A = {kerhull K, : x € A(Z (A))}
={K.:x€A(Z(A))}.

Thus Glimm A is the set of ideals studied by Glimm in [15], Section 4.
Let G be a Glimm ideal and let @) be a primitive ideal such that ¢ maps @ to G. If G is a subset
of a primitive ideal P then

P € hullker [Q] = [Q] = [Q)]

since [Q)] is closed. Hence ¢ (P) equals G. In particular, if ker [P] and ker [Q)] agree, [P] equals [Q],
so there is a bijection from Prim A/ =~ to Glimm A. The Jacobson topology on Prim A induces a
quotient topology on Prim A/ ~, and hence on Glimm A. This is termed the quotient topology for
Glimm A. By construction, ¢ is continuous with respect to these topologies.

Let f be a continuous bounded function on Prim A4, and define a functional f on Prim A/ =~ by

F(P) = f(P)

for P in Prim A. It is straightforward to check that f is a well-defined continuous function on
Prim A/ ~. Let [P1] and [P,] be distinct elements of Prim A/ ~. Then there exists f in C® (Prim A)
such that f ([P1]) and f ([Py]) are distinct. Since C is Hausdorff, it contains disjoint open subsets V;
and Vs, containing f ([P]) and f ([P2]) respectively. Then f~1(V;) and f~' (V3) are disjoint open
sets of Prim A/ ~ containing [P;] and [P;] respectively. Hence Glimm A with the quotient topology is
Hausdorff. Since A is unital, it follows from
Proposition 2.10 that Glimm A is also compact in the quotient topology.
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Let K, be a Glimm ideal, where z is an element of A (Z (A)). Then
K,NZ(A) = (kerhull K,,) N Z (A)
= () ®nz(4)

Pchull K,
=1,.

Thus, there is a map 1 : Glimm A — Prim Z (A) defined by
¥ (G) =GN Z(A)
for G in Glimm A. Equivalently,
¥ (Ky) = L, ¢ (ker [P]) = PN Z (A)

for x in A(Z(A)) and P in Prim A. Then 1 o ¢ agrees with 6, and, since 6 is continuous, if U
is open in Prim Z (A), then ¢~ (»=! (U)) is open in Prim A. Hence ¢! (U) is open in Glimm A,
and it follows that 1 is continuous. Clearly 1 is surjective. If ¢ (ker [P]) equals v (ker [Q)]) for
some P and @ in Prim A then P =~ @ and hence % is injective. As shown in [9], Lemma 8.10,
the Jacobson topology on Prim Z (A) agrees with the weak*-topology induced by A (Z (A4)), and is
therefore Hausdorff. Thus, v is a continuous bijection from a compact space to a Hausdorff space,
and, by [34], Theorem 5.9.1, ¢ is a homeomorphism.
The following is a useful technical result which may be found in [12].

Lemma 2.15. Let A be a C*-algebra, let X be a non-empty subset of Id A and let J be the inter-
section of X. Then, for all a in A,

las|| =sup{|las|| : I € X} .

Proof. Recall that if (4)),c, is a family of C*-algebras then the direct sum @©xca Ay is defined to be
the set of all (ax),c, in IIxea Ay such that supyc, [lax| exists. This is a C*-algebra under pointwise
defined operations and norm
[l(@x)|| = sup ||ax|| for a € A.
AEA

Let 0: A/J — @rexA/I be the natural map given by

0 (as) = (aI)IeX

for @ in A. This is well defined because, if a is an element of J, then it is an element of each I in X,
and because {||a;| : I € X} is bounded above by |las||, so that sup;cy [|ar|| exists.

It is easy to check that € is a *-homomorphism. If 6 (a;) equals 0 (b;) then a — b is an element of
each I in X so ay equals by and 0 is injective. Thus 6 is a *-isomorphism onto its image and hence
an isometry. Therefore

lasll =110 (a)ll = sup{[las]| : I € X}.

The following may be found in [25], Theorem 4.9.14,

Theorem 2.16. Let A be a C*-algebra, let a be an element of A and let C be a closed subset of
Prim A. Then there exists @ in C such that

lagll = sup {[lap| : P € C}.
The following is an immediate corollary of Lemma 2.15 and Theorem 2.16.

Corollary 2.17. Let A be a C*-algebra, let P be a primitive ideal of A and let G be a Glimm ideal
of A such that ¢ (P) is G. Then there exists Q in [P] such that

lagll = sup {[lar : R € [P]} = [lag] -
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The following theorem may be found in [24], paragraph 4.4.4.

Theorem 2.18. Let A be a unital C*-algebra. Then for a in A and X a strictly positive real number,
the sets {P € Prim A : ||ap|| > A} are compact.

Let A be a unital C*-algebra, let a be an element of A and let A be a strictly positive real number.
If P is a primitive ideal and |jap|| > A then ¢ (P) is a subset of P and

lagcell = llar ] 2 A
Conversely, if G is a Glimm ideal such that [lag| > )\, we can take P in ¢! ({G}) such that
lap|l = llagll = A.

Therefore
¢ ({P €PrimA: |lap|| > A}) ={G € Glimm A : ||ag| > A} .

Since ¢ is continuous, it follows that this set is compact.
Recall that a real-valued function f on a topological space is said to be upper semi-continuous
if f71([\,00)) is closed for A in R. For each element a of A, define ®, : Glimm A — R by

®, (G) = [lac|
for G in Glimm A. Then
O ([N, 00)) = {G € Glimm A : ||ag|| > \}

and this set is closed since it is a compact subset of a Hausdorff space. Thus ®, is upper semi-
continuous.
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Chapter 3

The Distance to the Scalars

In this chapter we give an exposition of the main results of [33]. In particular we show that every
element a of a unital C*-algebra A has a closest scalar A (a) and we calculate A (a) and the distance
from a to A (a) for some examples. We also find expressions for d (a, Z (A)) and |lad a].

The following corollary is an exercise from [31].

Corollary 3.1. Let A be a C*-algebra and let X be a non-empty subset of Id A such that the kernel
of X is zero. Then, for all a in A,

ladaal = sup {|lada,ras||: T € X}.
Proof. Let J be an element of Id A and let b; be an element of A/J;. Then for all j in J,
s, bslll = [l[a, b+ 4], < llla, b+ jlll < [ladaall Ib+j] -

Thus,
oy, bs]ll < llada all inf {ib + 31| < [lad4 alf,

which implies that ||ad4,; as|| is bounded above by [lad4 al|. It follows that
sup {|lada,rar|| : I € X} <|ladaal.
Conversely, if b lies in the unit ball of A, then
l[a, 81,11 < [Jad.a/r ax|
for all I in X. Applying Lemma 2.15,
I[a, b]]| < sup{”adA/[a]H TeX}.

Therefore,
ladaall < sup {||ada/rar]|: T € X}.

O

In [33], Stampfli defined the maximal numerical range of a bounded linear operator T on a
Hilbert space H to be

Wo(T) ={A e C:3(&) C H, [&all = 1, (Tn,&n) = A 1Tl —= T} -

In [14], Fong defined the (algebraic) maximal numerical range of an element a of a unital
C*-algebra A to be
Vi (a) = {J; (a):x €S9 (a)} ,
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where

S (a) = {:c € Sa:x(a%a) = ||a||2}
is the set of maximal states of a. The (algebraic) numeric range is defined by
Va(a)={z(a): 2 € Sa}.
Clearly V3 (a) is a subset of V4 (a). It was shown in [14] that
Wo (T) = Vg (T).

In [33], the maximal numerical range was used to prove the Pythagorean relation for operators;
that if T' is an element of B (H) then there exists a unique complex number A such that for all complex
numbers p,

2 2 2
1T = A"+ A= p” < T —pl”- (3.1)

The equation
ladp(m T|| = 2|17 = Al (3.2)

was then proved.

By the Gelfand-Naimark Theorem, 3.1 holds for any element of a C*-algebra. The same cannot be
deduced for 3.2, since the Gelfand-Naimark Theorem only gives that A is isometrically *-isomorphic
to a C*-subalgebra of B (H) for some Hilbert space H. Hence ||ad 4 a|| may be less than ||adp g al-
However, as observed in [33], it does hold if A is primitive.

Stampfli’s proof of the Pythagorean relation depends on the fact that Wy (T") is convex, a non-
trivial consequence of the Toeplitz-Hausdorff Theorem. We avoid this difficulty by proving the result
for a general C*-algebra, using the definition of Fong. The idea of the proof is the same as that of
Stampfli, but some of the details differ. This approach does not appear to have been used elsewhere.
Unfortunately, this strategy does not appear to help with the second equation, and we need the
equivalence of the definitions from [14] to complete the proof.

Lemma 3.2. Let a be an element of a unital C*-algebra A. Then the spectrum of a, o4 (a), is a
subset of Va (a), the numerical range, which in turn is a subset of the disc centred at the origin of
radius |al|.

Proof. Let X be an element of 04 (). Then A —a is not invertible. Let J be the left ideal A (A — a).
Since J does not contain the unit, it is proper. Let b be an element of J. If 1 — b lay in the unit
ball, 1 — (1 — b) = b would be invertible, which contradicts the fact that J does not contain the unit.
Therefore, 1 — b does not lie in the unit ball for all b in J. In particular,

I+ 0l = |l

for all b in J and p in C. Define f: J & Cl1 — C by

fo+u)=n
for bin J and g in C. Then

fO+pl

16+ u

for all bin J and p in C and f (1) is 1. Hence f has unit norm. By the Hahn-Banach Theorem, f
has an extension to a state x of A which is zero on J. In particular,

x(A—a)=A—z(a)=0
so A lies in V4 (a). Since |z (a)| is bounded above by ||al|,

A (a) g VA (a) g BHaH (0) .
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Since a*a is self adjoint, r4 (a*a) equals ||a]|®, and because a*a it is positive o4 (a*a) lies in RY.
Since 04 (a*a) is closed, [|al|® lies in 0 4 (a*a). Hence, a corollary of Lemma 3.2 is that there exists
z in Sy such that z (a*a) equals [|al|*. Thus SY (a) and V9 (a) are non-empty and

la|| = sup {x% (a*a):z€ SA} )

Since SY (a) is the inverse image of the singleton ||a]|® under the map a*a restricted to Sa, S (a)
is weak*-closed and therefore weak*-compact. Since V7 (a) is the image of SY (a) under a, it is also
compact. It is immediate that S9 (a), and hence V9 (a), are convex. In fact S9 (a) is easily seen to
be a face of Sy, although we shall not use this here. We may now prove a lemma equivalent to [33],
Theorem 2.

Lemma 3.3. Let a be an element of a unital C*-algebra A. If V3 (a) contains the origin then
2 2 2
lall™ + [ul” < lla+ ul
for all complex numbers p. Conversely, if
llall < lla+ pll
for all complex numbers p, then V3 (a) contains the origin.

Proof. 1f V§ (a) contains the origin then there exists = in SY (a) such that x (a) is zero. Recall that
x is self-adjoint, and hence that x (a*) is zero. Then for all  in C

la+ pl* >z ((a+ 1) (a+ p)
— o (a*a) + i (a) + pz (a) + |uf?
= [lalf® + |p|* .

This proves the first statement.

Suppose that a is such that |la]| < ||a + u| for all complex numbers p. Assume that V{ (a) does
not contain the origin. Let 6 be an element of [0, 27]. By linearity of states, V§ (ei‘ga) is the image
of V{ (a) under an anticlockwise rotation about the origin by 6. Since VY (a) is closed and convex
there exists a 6 in [0, 2] such that, for all X in V) (ewa), Re A > 7 for some 7 > 0. Let b = e*a.

Define G to be the set {x € S4 : Rex (b) < T }. Since G is the inverse image of [— [0, 7] under

Reob restricted to S 4, G is a weak*-closed subset of S4 and is hence weak*-compact. If G is
non-empty, the set

{x% (b*b) 1z € G}
is bounded above by [|b]| and hence has supremum 7. Since G is weak*-compact, 1 is achieved on
G. Assume that 7 = ||b]|. Then there exists « in G such that [|b]|* = z (b*b). But then,

Rez (b) < % <T,

which contradicts the fact that x (b) lies in V4 (b). Therefore 0 < n < ||b||. If G is empty, let ) be
Z€T0.
Define a strictly positive number v by

v = min Z, 161l =7 .
2 2

T

If z is a state in the complement of G, then Rex (b) > & which implies —2vRex (b) < —v7.
Thus

z((b—v) (b—v)) =z (') — 2vRex (b) + v/
(b*b) — v + 12
D) +v(v—r1).

N

€T
xT
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Since 0 < v < 3, it follows that

Therefore,
« % TV
w((b=w)" (b=v)) <z (Bb) = < |o]* — &1

where €7 is the strictly positive number 7v/2. If G is non-empty, let « be an element of G. Then
—2vRex (b) < 2v |z (b)| < 2ur? (b*b) < 2nw.
Therefore,

2((b—v)" (b—v) <+ 2w +12 = (n+v)* < (”H;n) = I~z

where €5 is the strictly positive number % ([|b]| — ) (3]b]| + n). If G is empty put £2 = 1. Then we
have shown that, for all z in Sy,
2 ((b—v)* (b—v)) < ||b]]> — min{e1,e2},

from which it follows that [|b — v|| < |[b[|. But then ||a — e?v|| < ||a|| which contradicts the hypoth-
esis. Therefore V{ (a) contains the origin. O

Let a and b be elements of A such that a — b is scalar. Then
la—b]* == ((a—1b)"(a—1))
for all z in S4. Therefore,

la +0]* + lla = blI* = sup {z ((a+b)" (a+b)+a((a=b)"(a—1b)))}

TESA
= sup {2z (a"a) + 2z (b*b)}
r€SA
<2 sup {z(a*a)} + 2 sup {z (b*b)}
z€SA z€SA
=2 (llal® + [l -

Now let (A,) be a sequence in C such that ||a — A, || converges to d (a,C1). Let N. be such that
la — Al < d(a,Cl) +¢
for all n > N.. Then for n,m > N., by the inequality above,
126 = X = Al + D = Anl” < 2la = Anl” + 2 [la = A

Therefore,
An = Am|? < 4(d(a,Cl) 4 ¢)* — 4d (a,C1)* = 42 (2d (a,C1) + £)..

Thus (A,) is Cauchy and converges to some complex number A (a). By norm-continuity
la—X(a)|| = lim |la— A, =d(a,C1).
n—oo

Theorem 3.4. Let A be a unital C*-algebra and let a be an element of A. Then there exists a
unique complex number A (a) such that, for all complex numbers p,

la =X (@)1* + A (a) = ul* < lla— u]*.
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Proof. Let A (a) be a complex number such that
la = A(a)|| = d(a,C1).
Then, for all p in C,
la = A(a)]l < [[(a = A(a)) + pll-
Then, by Lemma 3.3, the origin lies in V{ (a — X (a)). Hence, for all y in C,
lla = A(@)* + 1pl* < ll(a = A(a) + pl* .
Thus, for all y in C,
2 2 2
la =X (a)[” +[A(a) — p” < lla—pl”.

Suppose that X' is another complex number satisfying the inequality. Then
la =A@ +2[ (@) = N* < fla= X"+ A (@) =N < [la = A(a)]*.
Therefore | (a) — N| is zero, which implies that A (a) is unique. O

If X is a compact subset of C then there exists a unique circle of minimum radius containing X.
This circle is called the circumcircle of X, its centre is the circumcentre of X and its radius the
circumradius of X. If S is the circumcircle of X, then the following two fundamental properties
of circumcircles are satisfied:

(i) every closed semi-circle of S intersects X;

11 ere exist o, y and z 1n M Nnot necessari y 1ST1nc suc a 1S € circumecirclie o
ii) th ist dzin XNS (not ily distinct) such that S is the ci ircle of
{z,y,2}.

Lemma 3.5. Let X be a compact subset of C, and let r be the circumradius of the circumcircle S
of X. Then there exist x and y in X NS such that

|z —y| > V3r.

Proof. Let p be the circumcentre of X. We first show that there exist x and y in X N .S such that

Zxpy, the angle between z and y through s, lies between 2& and 4% radians. Let u be an element

3

of SN X. If there exists v in S N X such that Zuuv lies between %" and %’r radians then there
is nothing more to do. Otherwise, by property (ii), there exist w and z in X N S in the regions

indicated in Figure 3.1. Clearly Zwpuz lies between 2* and %’r radians so the statement is proven.

3

U

Figure 3.1: The positions of w and z.
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Let 6 be the angle between two such elements, x and y. Then cosf < % s0, by the cosine rule,

|z —y|* = 2r — 2r2 cos O
= 2r (1 — cosb)
> 3r2.
This completes the proof. O

For a in A, the spectrum of a is a compact subset of C, and hence has a unique circumcircle,
centre C,, and radius R,. Clearly r4 (a) > R,. Let a be normal. Then a — u is normal and

rala—p)=lla—pll, oala—p) =oala)—p

Thus,
Ra = Ra—ua Oa—u = Ca - K,

for p in C. Therefore C,_¢, is zero, which implies
la—=Cal|=rala—Ca) =Ra=Rap <rala—p)=la—pu.

Hence,
Ry = |la— Cul| = d(a,C1) = [la — A(a)]|-

But then, by Theorem 3.4,
la =X (@)* + A (@) = Cul” < la = Cul* = la = A(a)|*,

and A (a) equals C,. Thus we have proved that, for a normal, A (a) is the circumcentre of o4 (a),
whilst d (a,C1) is the circumradius of o4 (a). Furthermore, if a is self-adjoint, then its spectrum is
real, non-empty and bounded and, hence,

a =supoy (a), B=infoa(a),

exist. Then

1
)

Jla=A(@)] = d(@,C1) = Ry = 3 (a = ).

)‘(a):Ca (a+ﬁ)

We now use these facts to calculate A (a) and d(a,Cl) in some particular cases. These results will
be used in later proofs.

For an element a in A let ¢ : 04 (a) — C be the inclusion map. Let a be an element of Ay, so
that o4 (a) is a subset of R and define

14 = max {0,2}, 1— = max {0, —2}
These real-valued functions are continuous and
=14 —1_, 1412 =0
so by the functional calculus there exist elements a4 and a_ in Ag, such that
a=a4 —a_, ara_ = 0.
By the spectral mapping theorem

oalay) =11 (0a(a)), oala)=1-(0a(a)).
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Thus o4 (ay) and o4 (a_) are subsets of RT so ay and a_ are positive. This is the well known
orthogonal decomposition of @ in As, [27], Definition 1.4.3. Now [¢| = 14 + 21— so we define |a| =
ay + a_. Since

o = (o 1)
=13 +42
(14 *’L—)Q

:’L2

it follows from uniqueness of positive square roots that

Nl=

o = (a"a)* = (a*)
We may write

(bl +2), =5l =)

1+ =

N =
N

from which it follows that

(la] = a).

N =

1
ar =3 (al+a), a =
2
If a = b — ¢ for some b and ¢ in AT such that be is zero then
a*a=(b+c)’

so taking unique positive square roots |a| = b+ ¢. Thus ay = b and a— = ¢ so the orthogonal
decomposition is unique.
Suppose that a in Ay, is such that a4 and a_ both have unit norm. Since a4 and a_ are positive,
it follows that
alay) =ala) =1,

and hence that

Thus,
Aa) =0, d(a,Cl) =1.

27

Now let a be a normal element of A, let & = e¢™5 and define functions g, 21 and 22 on C by

1
Z0:§(|Z|+Z+Z*)
1
17 :g(|z|71+a(z*72))
1
12:§(|Z|—Z+C_V(Z*—Z)).

If A =z + iy is a complex number, with = and y the real and imaginary parts, we have
10 (N = = (Al +22)
n () =3 (1A -2+ v3y)
2 ) =3 (W =2 v3)

1
3
1

S0 10, 11 and 19 are real-valued. Direct calculation shows that

1 =19+ a1y + a212.
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By restricting to o4 (a) and applying the functional calculus, there exist elements ag, a1 and ag in
Ag, such that
a = ag + aay + a2a2.

Let us suppose that a is such that ag, a; and as are positive and have zero pairwise products.
Then arguing as in the orthogonal decomposition shows that this decomposition of a is unique. An
elementary calculation shows that

2 (A) = 0 if and only if 2 < 0 and y = +v/3z
11 (\) =01if and only if # <0 and y = vV3z or z >0 and y =0
12(/\)zoifandonlyifx§Oandy:—\/§worm20andy:0

By continuity of ug, the kernel of iy divides the complex plane into two regions, with 1y strictly
positive on one and strictly negative on the other. Similarly for ¢; and 23. Thus o4 (a) must be a
subset of the intersection of the non-negative regions for 1o, 11 and 2. Hence o4 (a) is a subset of
the union of the lines Ly, L1 and Ly in the complex plane, where Ly is the non-negative real axis,
Ly is the half line from the origin through « and Ls is the half line from the origin through a as
shown in Figure 3.2. Furthermore ¢; restricted to o4 (a) is zero except on o4 (a) N L;.

L

Figure 3.2: The sets Lo, L1 and Lo.

Let A be a non-negative real number. Then
Lo (A1) = A, 11 () = A, Lo (A@) = A

so each ¢; rotates o4 (a) N L; about the origin to the non-negative real line and maps the rest of
o4 (a) to the origin. Since ||a;| is positive it follows that ||a;|| o lies in 04 (a) and o4 (a) N L; is a
subset of [0, ]|a;|| @’]. Thus, the circumcircle of 4 (a) is the circumcircle of {||ao|| 1, [|a1| o, [|az]| &}.
In particular, if the a; are of unit norm, A (a) is zero and d (a, C1) is 1. If ag is zero but a; and as lie
in the unit ball, then the circle with centre —3 and radius v/3/2 contains 0, a and @&, and d (a, C1)
is bounded above by \/3/ 2.

Let A be a unital C*-algebra, let I be an ideal of A and let a be a self adjoint element of A. By
the spectral mapping theorem, ||a| + a; and ||a|| — a; are positive elements of A, and therefore

a(llall +ar) = el +asll, e (lall = ar) = [llall — az] -

Clearly
a(llall +ar) = llal +a(ar),  a(lall —ar) = llal = B(ar),
and therefore,
a(ar) = |llall +arll = llall . B(ar) = llall = [lllall — as]|-
Let G be a Glimm ideal of A. Then, by Corollary 2.17, there exist primitive ideals P and @ of A
such that ¢ (P) and ¢ (Q) are G and

lall +apll = [lllall +acll, lllall + agll = [llall + ac |-
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Thus,

a(ag) = [llall + ac| = lall
= [llall +ap] = {lal
=alap).

Similarly, 8 (ag) = 8 (ag). Let R be the intersection of P and (. Then

a(ar) = |lllall + arll = llal
= max {||lal| + ap| [l + aq|l} — [lal|
= [llall + ac| — lla|
=a(ag).

Similarly 8 (agr) = 8 (ag)-
The following theorem is known as the Kadison Transitivity Theorem. Its proof may be found
in [16], Theorem 1.

Theorem 3.6. Let A be a primitive C*-algebra with faithful irreducible representation (m, H). Let
V be an element of U (B (H)) and let {&1,...,&n} be a subset of H. Then there exists u in U (A)
such that

m(u) & =V k=1...n

and

oa(u) #{AeC: |\ =1}.
The following is proved in [33], Lemma 3 and Theorem 5.

Lemma 3.7. Let A be a primitive C*-algebra, let a be an element of A and let X be an element of
V2 (a). Then

1
lada all = 2 (Jlall” — A7)

Proof. Since it is primitive, A has a faithful irreducible representation (m, H). Identifying A with
its image and applying the Hahn-Banach theorem gives

V3 (a) = Vg (@) = Wy (a) .

Thus there exists a sequence (&) in H such that each &, has unit norm, (||a,||) converges to | al|
and ({a&,,&,)) converges to A. Write

aﬁn = angn + /8n77n7

where

1
Qp = <a£na€n> ) Bn = ||(a - an) fn” , Nn = 67 (a - an) n.

Then 7,, has unit norm, (&,,n,) is zero and &,, 1, are linearly independent. Since
1
H = (&) ® () ® {&nmn} ™,

we may define V,, : H — H by

where ( lies in {&,, nn}L. Clearly V,, is linear and

Ve (@€ + Bt + OI” = ek — B + ¢
= la> + 18 + |¢I?

= ||an + B + |17
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Therefore V,, is a surjective isometry and hence unitary. Applying Theorem 3.6, there exists u,, in
U (A) such that

Unén = &En, UnTn = —Tin-

Thus,
unagn = 20471571 - afn,
and
lada al| = [[(aun — una) &all = 2{[(a — an) &al| -
Furthermore,
(@ — an) fn”Z = Ha§n||2 = (s En) — n (Eny nn) + |O‘n|2
2 2
= [|a&nll” — ||
SO

ladaall > 2 (Jlagal* ~ lan[?) " -

Letting n tend to infinity, (]|a,||) converges to ||a|| and (a,) converges to A. Hence

1
lada all = 2 (Jlall* — A7)

O
Theorem 3.8. Let A be a primitive unital C*-algebra. Then, for all a in A,
lada al = 2]la = A(a)]l.
Proof. For all 4 in C
la = A(a)ll < ll(a = A(a)) + u
and, by Lemma 3.3, VJ(a—A(a)) contains the origin. Therefore, by
Lemma 3.7,
lada afl = [lada (a = A(a))l| = 2[la — A(a)]].
Conversely,
lada afl = [lada (a = A(a))l| < 2[la —A(a)]].
O
The following is an immediate corollary of Theorem 3.8 and Corollary 3.1.
Corollary 3.9. Let A be a unital C*-algebra. Then, for all a in A,
lada a|| = 2sup {|lap — A(ap)| : P € Prim A} .
Proof. By Theorem 3.8 and Corollary 3.1,
lada all = sup {|lada,p ap|| : P € Prim A}
= 2sup{|lap — A(ap)| : P € Prim A}.
O

For the next proof we use the following theorem, which can be found in [26], Theorem 2.13.

Theorem 3.10. Let Uy, ...,U, be open subsets of a locally compact Hausdorff space X and let M
be a compact subset of Uy U...UU,. Then there exists a partition of unity on M subordinate to
Uy, ..., Uy, that is to say continuous functions f1,..., fn, on X with compact support such that, for
xin X,

0< fij(x) <1, supp f; € Vj, ji=1,...,n
and

F@) + ot fal@) =1

for all x in M.
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We may now prove [31], Theorem 2.3.
Theorem 3.11. Let A be a unital C*-algebra. Then, for a in A,

d(a,Z (A)) =sup{|lag — A(ag)| : G € Glimm A} .

Proof. For G in Glimm A let pg : A — A/G be the canonical map . Clearly pe (Z (A)) contains the
scalars. Conversely, let zg be an element of pg (Z (A)), where z lies in Z (A), and recall that

Z(A)=(GnZ(A))®Clg.
Then z¢ is a scalar and pe (Z (A4)) is Clg. It then follows from Theorem 3.4 that, for all z in Z (A),
la 2]l = [[(a = 2)all = llag = A(ac)|-

Thus
a =sup{llag — A (ag)| : G € Glimm A}

exists and « is bounded above by d (a, Z (4)).
Recall from Chapter 2 that ®, : Glimm A — R*, the map taking G to |lag||, is upper semi-
continuous, and, given € > 0, the set

M =2 ([a+e,00))
is compact. If M is empty, then, by Lemma 2.15,
d(a,Z (A)) < |la|| =sup{|lac| : G € Glimm A} < a + €.

Otherwise, for H in M define
U=, )\(a y ((mo0,a+¢)).

Since ®,_x(4y) is upper semi-continuous and
Do ran) (H) = llag — A(an)|| < o,

Upg is an open neighbourhood of H. Thus {Ug : H € M} is an open cover for M and, by compact-
ness, there exist H',..., H" in M such that Ug,...,Ug~» form an open sub-cover. Let f1,..., f"
be a partition of unity for M, defined on Glimm A and subordinate to Ug1,...Ugn. Let z',..., 2"
be elements of Z (A) such that, for all G in Glimm A,

=f(@A1lg j=1...n.
Let 2 be the element > 7, N 27 of Z (A) where M denotes A (ag;). Then, for each G in Glimm A4,

lac - zall = ||ac = Zj_i 32|
< |loc = Zjshac|| + | Spoizbac - SjoV |
< (1= (@) 2 (@) + X1, (6) @ (G)
<(1- TP (@) 2 (@) + (Zioaf (@) (a +2)

since f7 is zero unless G lies in Ug;. If G lies in M then Z;-L:lfj (@) sums to 1. If G is not an
element of M then @, (G) is less than « + e. Therefore, in either case,

d(a, 2 (A) < llag — 2]l < a +<.

Since ¢ was arbitrary, the result follows. O
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Chapter 4

Pure Functionals

We begin this chapter with a statement of the polar decomposition theorem for linear functionals,
[10], Theorem 12.2.4 and Definition 12.2.8.

Theorem 4.1. Let A be a unital C*-algebra, with dual A* and second dual A**. Then, for each x
in A*, there exists a unique pair (u,|z|) with u an element of A and a partial isometry in A**, and
|z| an element of A% such that

*

lzlll = llzll, = (a) = || (ua), |z|(a) =z (u"a),
for all a in A, and with uu* equal to the support of |z|.

The functional |z| is known as the absolute value of x.

For a unital C*-algebra A we define G4, the set of pure functionals of A, to be 9.A7, the
extreme points of the unit ball of the dual of A. We now quote a characterisation of G4 from [6],
Proposition 1.1.

Theorem 4.2. Let A be a C*-algebra and let x be a linear functional. Then x is a pure functional
if and only if there exists a non-zero irreducible representation (w, H) such that, for all a in A,

x(a) = (m(a)&,m)

where & and n are unit vectors in H. Furthermore, when this is the case,

|z[ (a) = (7 (a) €, &)
for all a in A, and |x| is a pure state.

Let a be an element of a C*-algebra A. Then there exists an element x in S4 such that

la]* = = (a*a)
= (72 (@) &, 72 (@) §u)
= ||7TI (CL) §91H2 :
Define a function f on A by
f(b) =(m(b)&,m)
for b in A, where .
n= mﬂ-m (a) fag

Then 7 is a unit vector and f is a pure functional on A. Thus, for every a in A, there exists an
element f in G4 such that f (a) equals ||a].
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Let I be an ideal in A, let f be a pure functional on A/I, and let (w, H) be an irreducible
representation of A/I such that, for all a; in A/I,

flar) = (m(ar)&m)

for some unit vectors £ and n in H. Then 7 o p; is a *~homomorphism from A to H and 7 o py (4)
equals 7 (A), from which it follows that 7 o p; (A)" equals 7 (A)'. Thus (7 o p;, H) is an irreducible
representation of A and, for all a in A,

fopr(a)=(mopr(a)&,mn).

Therefore, f in G 4/; induces fopr in G 4. Similarly, let f be a pure functional on A and let (7, H)
be an irreducible representation of A such that, for all a in A,

fla) = (m(a)&,m),

for some unit vectors £ and i in H. Then if I is an ideal of A contained in ker s, an irreducible
*-homomorphism is induced on A/I by 7 and f induces a pure functional

flar) = (m(a) &, n)

on A/I.
Define a map A4 : G4 — 0.54 by
Aa(z) = |z]

for x in G4. Let G4 and 9,54 have the weak*-topologies induced by A*. Recall that if a subset X
of A* has the weak*-topology and x is a point in X then every neighbourhood U of x contains an
open set of the form

Vx (z3a1,...,an56) ={y € X : |z (a;) —y(a;)| <efor j=1...n}

for some n in N, ay,...,a, in A and € > 0.

Let U be an open set in G4 and let x be an element of A (U). Then there exists y in U such
that © = |y|. Let a1,...,a, in A and € > 0 be chosen so that V = Vi, (y;a1,...,a,;¢€) is a subset
of U. By Theorem 4.2, there exists a non-zero irreducible representation (7, H) such that, for all a
in A,

y(a) =(m(a)&n),  z(a)=(m(a)§§)

where ¢ and 7 are unit vectors in H. By [24], Proposition 3.13.4, there exists a unitary u of A such
that

m(u)n=¢.
Then, for all a in A,
x (ua) =y (a).
Let W = Vyg, (z;uaq,...,uan;e), let w be an element of W, and define

z:A— Cby @ ()

for @ in A. Clearly z is a linear functional and, for all a in A,

z (a) = (mw (ua) &w, &w)
= (mw (@) §uw, Tw (u”) Eu) -

Since w is unitary, m, (u*) is isometric, and hence 7, (u*) &, has unit norm. It follows from Theorem
4.2 that z is a pure functional. Furthermore, since

lw (uaj) — x (uaj)| <e, j=1...n,
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it follows that
|Z(aj)*y(aj)‘<€, j=1...n.

Hence z is an element of V. Clearly A (z) equals w, and we have shown that
W CA(V)CA().

Since z in A (U) was arbitrary and W is an open neighbourhood of z, it follows that A (U) is open
and hence A is open.
Let = be a pure functional, and let (71, Hy) and (72, Hs) be irreducible representations such that,
for all a in A,
z(a) = (m1 (a) &1,m) = (2 (a) &2,72) -
Then, for all a, b and cin A,

a (a”be) = (m (b) w1 (¢) &1, m1 (@) m) = (ma (b) w2 (¢) €2, 2 (a) 2) -

Let b be an element of ker m;. Then, by continuity,

(g (b) w2 (¢) €2,m) = 0

for all n in Hy. Thus 7o (b) is zero on ma (A) & and hence on Hy. By symmetry, m and 72 have the
same kernel, and there is a well defined map
T'y: G4 — Prim A given by

L4 (z) =kerm,

where (7, H) is an irreducible representation of A such that

z(a) = (m(a)&,m)

for some unit vectors ¢ and 7 in H. As an immediate consequence of
Theorem 4.2, we see that, for all z in G 4,

Fa(lz]) =Ta(z)

and 'y =T 4 0 A 4. Since, for every x in 0.5 4,

x(a) = (my (@) &, &x)

for all @ in A, it is immediate that I" 4 restricted to 0.5 4 agrees with the natural map ker : 9,54 —
Prim A, discussed in Chapter 2. As shown there, ker is open. Since A4 is also open, I'4 is the
composition of open maps and is therefore open.

In the following discussion a net (), is said to be a subnet of a net (xx),., if there exists a
function ¢ :  — A such that z,,) =z, and for each X in A there is a wp in Q such that ¢ (w) > A
whenever w > wg [21], p70. Note that this definition differs from that given by some authors (e.g.
[35]). The following technical result may be found in [13], Chapter II, 13.2.

Lemma 4.3. Let X and Y be topological spaces and let f : X — Y be an open map. Then,
whenever a net (yx),cp converges to a point f(x) in'Y for some x in X there exists a subnet
(Y)wea of Wr)aca and a net (xy,),cq of X such that, for all w in 2,

/ (xw) = Yw
and (x,,) converges to x.

Proof. Let N, be the set of neighbourhoods of x directed by set inclusion. Let 2 be the product
of A and N, with the product direction. Let w be the element (A,U) in €. Since f is open, f(U)
is an open neighbourhood of f (), and there is therefore a Ao in A such that y, is in f (U) for all
1> Ag. Choose A, greater than or equal to A and Ay and let ¢ be the map taking w to \,.

For A in A, let wg = (A, X). Then ¢ (w) > X\ whenever w > wy Hence, defining y,, to be y, , for
w in Q gives a subnet of (yx),c,. For each w in Q, choose z,, in U such that f (2,) = y,. If U is
an open neighbourhood of z, let wy = (A, U) for some A in A. Then z,, lies in U when w > wp and
() is a net converging to = such that f (z,) =y, for all w in Q. O
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We now prove an important formula for ||ad4 a|| following the proof given in [30], Proposition
5.7. For an alternative proof see [31], Proposition 2.6.

Proposition 4.4. Let A be a unital C*-algebra. Then, for all a in A,
lladaall = 2sup {|lap — A (ap)| : P € Primal A} .
Proof. Since every primitive ideal is prime, and therefore primal,
sup {|lap — A (ap)| : P € Primal A} > sup {|lap — A(ap)| : P € Prim A}.

Let I be a proper primal ideal. By Theorem 2.7 there exists a net (Ps),c 4 in Prim A converging to
every point in hull /. By Theorem 3.4

[A(ar)| < llap, || < laf-

Hence (A (ap,)) lies in a compact subset of the complex plane and by [21], Chapter 5, Theorem 2,
has a subnet (A (apﬁ))ﬁeg convergent to some complex number u. Let a be an element of A. As we

have seen, there exists a pure functional f on A/I such that

f (a1 = p)l = llar —

and f induces a pure functional f on A such that I'4 (f) lies in hull I and is therefore a limit of (Pg3).
Since I'4 is open and surjective, by Lemma 4.3 there exists a subnet (P,), . and a net (fu),cq

weak* convergent to f such that T'4 (f,) is P, for all w in Q. Then, given € > 0, there exists a w in
Q such that

Aap,) —pl <35, |fla—p) = fola—p)] <3
Recalling that f, induces a pure functional on A/P,,, we have

lap, —Alap,)|l = [fo (ap, — A(ap,))]
> [fw(a—p)| = |fo(Aap,) — p)
zfla—p)|=|fwla—p) = fla—p)|-3
2|fla=wl—5-3
= llar —pll—¢
2 llar = Aar)|| -«

Thus
sup{|lap — A(ap)| : P € Prim A} > |lar — A (a;)||

for any primal ideal I of A. Hence
sup{|lap — X (ap)|| : P € Prim A} = sup{|lap — A (ap)|| : P € Primal A}
and this equals |lad || by Corollary 3.9. O

For a unital C*-algebra A, let

Ny=conv{feGys:f(1) >0}

For a in A, let
Ua(a) ={f(a): f € Na}.

Since S9 (a) is a non-empty weak*-compact face of S4, by the Krein-Milman Theorem, there exists
an element z in 9,54 such that z (a*a) = |ja||®. Define f: A — C by

f(0) = (m(b) &,m)
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where

— 0T (a) £,

lall

and 6 is an element of [0, 27], chosen so that ez (a) > 0. Since

I (a) & |* = (7 (a%a) &, &) = (a*a) = ||a]®

7 is a unit vector and f lies in G4. Since

)= ra
f(b) = —x(a*b),

lal
it follows that f (1) is positive by choice of , and that f (a) = €* ||al|. Thus, for all @ in A, there
exists f in N4 such that |f (a)| = ||la|| and hence there exists an element of norm |[|a|| in Uy (a).
Thus,

lall = sup {[f (a)| : f € Na}.

In Chapter 3 the circumcircle was defined and used to find an expression for A(a) when a is
self-adjoint. We now prove some inequalities connecting A (a) and the circumcentre of Uy (a) for a
general element a of A.

Lemma 4.5. Let A be a unital C*-algebra. Let a be an element of A, let pu(a) denote the circum-
centre of Ua (a) and let p(a) denote the circumradius of Uy (a). Then:

@) A (@) <4lu(@)flal;

(i) if n(a)] < 5 lall then [A(a)l” < 4]p(a)| (lall - |p (@)]);
(iii) al® = p(a)* + | (a)|*;

(iv) [A(a) = p(@)* < 2|A ()] [|al|.

Proof. Fix ain A and let p = p(a), A = A(a) and p = p(a). As shown above, there exists « in
U (a) such that |a| = ||al|. Therefore

p=la—pl = lall = |ul

.>
The diameter perpendicular to the line Au divides the circumcircle into two semicircles. By property
(1) of circumcircles there exists f in N4 such that @ = f (a) is in the closed semicircle not cut by

RS —
M. Let 6 be the angle between A and id. By construction p = |a — p| and 0 lies in [Z, 37”], SO
cos@_é 1. Let t equal f (1). Since ¢ lies in [0, 1], the complex number , given by t\ + (1 — ¢) u, lies
on Apu.
o
2 P

b
X
B

Figure 4.1: The angle 6.

The cosine rule and cosf < 1 gives the inequality

loo = B > |ao — p| = p.
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Now,
lla = Al = [f(a—A)
= |a—tA|
2 [la—=tA= (1 =t)u[ = [(1 =) p]
> la—=pl =1 —=1)yl

=p— |yl
2 |lall = 2|ul,
from which it follows that
2|ul > fla = lla=Al, = lla= A" <= (lla] —2[u)*.
By Theorem 3.4
la =X+ A2 < flal*,  lla= Al < la] .

Thus,
AP < Jlal® = fla = AlJ®
= (lall = fla = All) (lall + fla = Al)
<2]p[2 ol
= 4|plllal-
If |u (a)] < L a, then
A < llall® = lla = AlI* < llall* = (lall = 2|u)* = 4]ul (lall = [x])-
This proves (1) and (2). By the method used above we may choose f in N4 such that the angle
between g and jid lies in [Z,3%] where a = f (a). By the cosine rule
lal® > |f (@)* = p* + |u|*.
This proves (3). From (3), or the observation that Ujs (a) is a subset of Bjq) (0), it can be seen
that ||a]| > p. Let f be an element of N4 such that |f (a — u)] > p. Then f (1) lies in [0,1) since
f (1) =1 implies
[f (a =)l =1[f (a) = ul <p.
Let
a=fla), B=FfDn
and let ¢, 6 be the angles indicated in Figure 4.2. Then,
la=Bl=|f(a—w|>p=If(a)—ul
and, by the cosine rule, cos ¢ > 0. Hence cos < 0. Applying the cosine rule again gives that
lall = ol = |8 —af = |f (a— )]
Thus, for all f in N4, either
[f (@ =@l <p<al,
or |f(a — p)| > p, in which case |f (a — p)| < ||a]|. Therefore,

lall = sup{|f (@ = p)| - f € Na} = lla—pll.

By Theorem 3.4,
A= pl? < lla = pl* = la— X))
< [lal* = fla = A|I*
= (lall = fla = All) (lall + lla = All)
< 2[Al o]

and the proof of (4) is complete. O
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] Iz

Figure 4.2: The angles 6 and ¢.
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Chapter 5

The Categorisation Theorem

In this chapter we develop the main theorem of this paper, the categorisation theorem given in [31],
Section 3. This is done by proving four theorems connecting the values of K, (A) and K (A) to the
primality of the intersection of a fixed number of primitive ideals containing the same Glimm ideal.

We begin by quoting two technical results which will be used in the following theorems. They
can be found in [2], Theorem 4.3 and [1], Corollary 2.4 respectively.

Proposition 5.1. Let w be a *~homomorphism on a C*-algebra A. Then, for each element a in A,
there exists b in ker w such that b is an element of C* (a), the smallest C*-subalgebra of A containing
a, and

la =l = |7 (a)]] -

Since every ideal I of A is the kernel of the quotient homomorphism, an immediate corollary of
Proposition 5.1 is that, for all a in A, there exists b in I such that

lla =l = llar|l -

Proposition 5.2. Let A be a C*-algebra and let a and b be elements of Asq such that ab lies in I.
Then there exist a1 and by in I such that a — a1, b — by lie in Iy, and (a — aq1) (b —b1) is zero.

Note that since a and b lie in Az, and a —aq and b— by lie in I, in the statement of Proposition
5.2, a1 and by lie in I,.

The first theorem, a reformulation of [30], Theorem 5.8, gives necessary and sufficient conditions
for K, (A) to equal % Tt also shows that, for a non-commutative C*-algebra, if K (A) is not equal
to 2, K (A) > K, (A) > 1. The proof given here follows [30], Theorem 5.8, but it is also possible to
deduce the result from [32], Theorem 4.4 (see Chapter 6).

Theorem 5.3. Let A be a non-commutative unital C*-algebra. If, whenever two primitive ideals
of A contain the same Glimm ideal, their intersection is primal, then K, (A) = % Otherwise
K, (A) > 1.

Proof. Suppose that whenever two primitive ideals of A contain the same Glimm ideal their inter-
section is primal. Let G be a Glimm ideal and let a be a self adjoint element of A. As we have seen,
there exist primitive ideals P and @ of A containing G, such that

O[(ag) :O[((J,R), 5(0’G) :ﬂ(aR)v
where R is the intersection of P and Q. Since, by hypothesis, R is primal, by Theorem 4.4,
lar = A(ar)ll < 5 lladaal.

Since a is self adjoint,

lar — A(ar)ll = 5 (a(ar) — B (ar))
= 3 (a(ag) - B (ag))
= llag — A(ag)l|



Since G was arbitrary, this implies that
sup{[lac — A (ac)| : G € Glimm A} < 1 |lad af .

Then, by Theorem 3.11,

d(a,Z(A)) < 5 lladaal

1
2
for all a in A, Therefore K, (A) < 1L Since A is non-commutative,

2
K, (A) > 1, and consequently, K, (A) = 1.

Conversely, suppose there exist primitive ideals P and @ of A such that their intersection contains
the same Glimm ideal, but is not primal. Then, by Corollary 2.8, there exist ideals I and J of A
such that

I¢pP,  J¢gQ, 1J={0}.

We may choose a in I but not P. By Proposition 5.1, there exists b in GNC* (a) such that ||c|| = |lca||
where ¢ = a — b. Since C* (a) is a subset of I, ¢ is an element of I but not of G. Since zero is an
element of GG, ¢ is non-zero, and we may rescale ¢ to have unit norm. Then c*c is a positive element
of I and

l[e*ell = ll(c"e)gll = 1.

By this argument we may choose b in IT\G and ¢ in JT\Q such that
16l = lloall = llell = lleall = 1.

Furthermore, since IJ is zero, bc equals zero. Let a = b — ¢. Then a¢ is self-adjoint, and by the
uniqueness of the orthogonal decomposition,

_ .+ _ =
ba = ag, cGg = ag-

As we have seen, in these circumstances ag — A (ag) has unit norm, so by Theorem 3.11
d(a,Z (A)) = [lag — A(ag)| = 1.

Let R be a primitive ideal. Since IJ is zero, R contains at least one of I and J. Hence R contains at
least one of a™ and a~. Therefore, for each R in Prim A, ap is either a} or ap . Since aj% is positive

laze = A (ar)l| = 5 (o () = B (az))

laz |

IN N
NI—= N

Similarly for aj. Therefore
2sup{|lag — A (agr)| : R € Prim A} < 1.
Then, by Theorem 4.4,
ladaall <1< d(a,Z(A) < K (4) [ladaall.

Since d(a,Z(A)) is non-zero, |ladgal is non-zero, and this implies that
K¢ (A) > 1. O

Theorem 54. Let A be a non-commutative wunital C*-algebra  such  that,
whenever three primitive ideals of A contain the same Glimm ideal, their intersection is primal.
Then K (A) = 3.

Proof. Let a be an element of A and let G be an element of Glimm A. Let b = a — A (ag). Then
A (bg) is zero by Theorem 3.4. Let B be the C*-algebra A/G, let A be an element of 0.Up (bg) and
define

F={feNg:f(bg)=A\}.
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By definition of Ug (bg), F' is non-empty. F is clearly convex, and since A is extreme in Ug (bg), F
is a face of Ng. Furthermore

F=Ngnbo  ({\).

Thus F is weak*-closed in the weak*-compact set A} and is hence weak*-compact. Hence the Krein-
Milman theorem applies to F, and there exists f in 9.Np such that f (bg) = \. By property (ii)
of circumcircles there exist points f (bg), ¢ (bg), h (bg) with the same circumcircle as Ug (bg) for
some f,g,h in 0. Np. Since {g € Gp : g(1) > 0} is a closed subset of Np such that

Np =conv{g e Gp:g(1) >0},

it follows from the Krein-Milman theorem that

0.Np C {gEGB Zg(l) ZO}

Hence there exist nets (fa),c 4 (gg)ﬂeB, (h’Y)weC in Gp convergent to f, g, h respectively. Let
A = A x B x C have the product direction and define

fagy) =far Yapry) =98 Plapry) =Dy

Then it is easy to check that (fx)yca, (92)xca @and (hx) e are nets convergent to f, g, h respectively.
For each A in A, define primitive ideals Py, @) and Ry of A by

Py=T(fropa), Qx=T(gropa), Rrx=T(hropa).

Let Sy be the ideal Py N Qx N Ry. Clearly G is a subset of Sy, and by hypothesis Sy is primal.
Since Sy is a subset of ker f) o pg, a well defined function is induced on A/Sy by fi. Let px be
the circumradius of Uy /g, (bs, ), and let € > 0. Since f is the weak™*-limit of (f)), there exists Ao in

A such that |fy (bg) — f (bg)| < € for A > X\g. Hence

1 (bsy) = £ (ba)| < |p(bsy) — fa (bsy)] + [fx (bsy) — f (b)) < pr+e

for all A > Ag. Similar inequalities hold for g and h. Thus, the circle with centre u (bg, ) and radius
px + € contains the points f (ba), g (bg), h (bg), and hence py + ¢ is larger than the radius of their
circumcircle, which by construction is the circumcircle of Ug (bg). Since A (bg) equals zero, it follows
from

Lemma 4.5 (4) that p(bg) is zero. Combining this with the fact that Up (bg) has an element
of norm ||bg|| it can be seen that, for A sufficiently large,

px < lbsy || < [lball < pa + e

Since ¢ was arbitrary, it follows that py converges to ||bg||. Applying this to Lemma 4.5 (3) shows
that

2 2 2
A+ i (bsy)|” < Mlbs, II” < [lbe |

from which it follows that p(bs,) converges to zero. Applying this to
Lemma 4.5 (1) shows that A (bs,) converges to zero. Thus, given € > 0, there exists a A such
that

Abs )l <5, [fa(ba) — f(bo)| < §-

Furthermore,

[bsy = A (bsy )l = [fx (bsy, — A(bsy))]
> [fa (bsy )| = (A (bsy)[ [fx (1)]
> [f (ba)| = | fx (bsy) = f (ba)| — A (bs,)]
> [f(be)l — § — 5
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Since p (bg) is zero and Uy (bg) has an element of norm ||bg ||, the circumradius of Ug (bg) is ||ba|| -
The points f (bg), g (ba), h (bg) lie on the circumference of this circle and therefore have magnitude
[[bc|l. Since A (bg) is zero, for any Glimm ideal G and any £ > 0, there exists an element S in
Primal A such that

2[bs = A(bs)ll = 2lbgl| = & = 2[bg = A (ba )| — &

By Proposition 4.4 it follows that, for all G in Glimm A,
lladabl = 2[bc — A (ba)ll — €
and, by Theorem 3.11,
lad.bll > 2d (b, Z (A)) — <

for all € > 0. Thus,
ladaall = [ladabl| = 2d (b, Z (A)) = 2d (a, Z (A)),

and K (A) < 1. Since A is non-commutative K (4) > 1 and the theorem is proved. O
The following theorem is [31], Theorem 3.3.

Theorem 5.5. Let A be a unital C*-algebra with three primitive ideals containing the same Glimm
ideal which have non-primal intersection. Then
K (4) = 75.

Proof. Let P, @ and R be primitive ideals containing the same Glimm ideal G such that PNQ N R
is non-primal. As shown in Theorem 5.3 above, if A has two primitive ideals which contain the same
Glimm ideal and whose intersection is non-primal then K (A4) > Kg(A) > 1 and there is nothing
more to prove. Therefore we may assume PN Q, @ N R and RN P are primal.

Since PN Q N R is not primal, by Corollary 2.8 there exist ideals I, J and K of A such that

I¢pP, J¢Q K¢R  IJK=/{0}.

Since P N @ is primal, applying Corollary 2.8 again gives that I.J is non-zero. Similarly, JK and
K1 are non-zero. Since IJK is zero, Q N R is primal, and K is not a subset of R, it follows that I.J
is a subset of Q N R and hence of ). Since @ is primitive, but does not contain J, I is a subset of
Q. Similarly,

IQQ3R7 JQP,R, KQP7Q

Thus,
PO J+ K, Q2I+K, ROJ+I.

Arguing as in Theorem 5.3, we may choose a in IT\P, bin J*\Q and ¢ in KT\R such that
lall = llapll = [[oll = [[bp]| = llc| = llepll =1

Then a, b and c are self adjoint and ab lies in IJ, be lies in JK and ca lies in KI. Hence, by
Proposition 5.2, there exist aq,by in I Jsq, ba,co in JK,, and cs,as in K1, such that

(a—a1)(b—0b1)=(b—0b3)(c—c2) =(c—c3)(a—a3)=0.
Define self-adjoint elements d, f and g of A by
d=a—a; —as, f=b—>by — by, g=c—cCy—C3.

Since a1 + a3 is an element of J + K, and hence of P, it follows that dp equals ap. Similarly fq
equals by and gr equals cr. Now,

df:(a—al—ag)(b—b1—b2)
(a—a1)<b—b1)—<a—a1)bz—a3 (b—b1)+a3b2
0,

38



since (a — ay) (b — b1) is zero and the other terms are elements of IJK. Similarly, fg and gd are
zero. By Proposition 5.1, there exists p in P N C* (d) such that

ld = pll = lldpll = [lap| = 1.

Since every element of C* (d) is an element of P NI and has zero product with f and g, we may
replace d with (d — p)z. Doing the same to f and g shows that A has positive elements d, f and g
such that:

(i) dliesin I, f in J and g in K
(ii) df, fg and gd are zero;
(iii) d, f, g, dp, fo and gr have unit norm.

Define an element h of A by
4dri

h:d—l—e%f—i—e3 g.

Then h is normal and the decomposition is the unique decomposition of h discussed in Chapter 3.
As shown there, h has unit norm. Since G is contained in P, @ and R, it follows that

1= [ldpll < lldall < [ld]] = 1.

Similarly fg and gg have unit norm. Therefore,

4mi

ha =dg+e fo+eF gg

is the decomposition of hg, hg is of unit norm and d (hg,Clg) is 1. Using Theorem 3.11,
1=|h||>d(h,Z(A)) >d(hg,Clg) =1.

Thus d (h, Z (A)) is 1.

Let S be a primitive ideal of A. Since d, f and g have unit norm, dg, fs and gg lie in the unit
ball of A/S. Since IJK is zero, S contains at least one of d, f and g. Suppose d lies in S. Then dg
is zero and, as argued in Chapter 3,

Ihs = A(hs)|| = d (hs,Cls) < 5.
Similarly if f or g lie in S. By Corollary 3.9,
lada all < V3 = v3d (h, Z (4)) < VK (A) ladal].
1
Therefore K (A) > 7
The last component of the categorisation theorem is [31], Theorem 3.4.

Theorem 5.6. Let A be a unital C*-algebra such that K (A) = . Then K (A) < %

Proof. Let a be an element of A and let G be a Glimm ideal of A. Let b be the element a — A (ag)
of A and let B be the C*-algebra A/G. Then A (bg) is zero by Theorem 3.4. By Lemma 3.2 (4),
Ua (b) has its circumcentre at the origin and it follows that the circumradius is ||b||. Lemma 3.5
implies that there exist elements f and g of Ng such that

|f (ba) = g ()| = V3llbell, | (ba)l = 19 (ba)| = llbel -

As in the proof of Theorem 5.4, there exist nets (fx),c, and (gx)yc in the set {g € Gp: g (1) > 0}
converging to f and g respectively with corresponding families of primitive ideals

Py=T4s(fropa), Qx=Ta(gropa)
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containing G. Let Ry be the intersection of Py and Q. Since K (A) is %, Theorem 5.3 implies that
R) is primal.

Since (fa)yca and (ga)yep are weak™ convergent to f and g respectively, for each € > 0 there
exists A in A such that

Ifx(ba) = f(ba)l <&, lga(ba) —g(ba)| <e.

Then
£ (ba) — g (ba)| > V3 ||ba || — 2¢.

Let L be the perpendicular bisector of the line from fy (bg) to gx (bg). Since fi (bg) and gy (bg) are
the same distance from the origin, L passes through the origin. Let p be a complex number. Since
fa (1) and gy (1) are both positive, pfy (1) and pgy (1) both lie on the same side of L, see Figure
5.1. Hence at least one of the inequalities

> 3V3ball - ¢
> $V3|ba| — ¢
must hold. Thus,

16y = A (bR )| = max {[fa (bry = A (0r\))] 590 (bR — A (b))}

> V3 |lbe —e.
It now follows that
80 VB2
Ot~ (1)

,

Figure 5.1: The positions of pfy (1) and ugx (1).

lada al = [lada b]|
= 2sup {||bp — A (bp)| : P € Primal A}
> V3 ball
= V3ac — A(ag)|-

Since G was arbitrary, it follows that
d(a,Z (4)) < % [lad s all,

and hence K (A) < % O

We are now in a position to state and prove the categorisation theorem [31], Section 3.

Theorem 5.7. Let A be a unital C*-algebra. Then K (A) and K (A) are zero if and only if A is
commutative. When A is non-commutative there are three mutually exclusive cases:
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(i) K(A) = K,(A) = 1 if and only if whenever three primitive ideals of A contain the same
Glimm ideal of A their intersection is primal.

(i) K (A) =1/V3, K, (A) = % if and only if whenever two primitive ideals of A contain the same
Glimm ideal of A their intersection is primal, but there exist three primitive ideals containing
the same Glimm ideal whose intersection is not primal.

(iii) K (A) > K5 (A) > 1 if and only if A has two primitive ideals which contain the same Glimm
ideal, but whose intersection is not primal.

Proof. The commutative case is immediate from the definition. Consider A non-commutative. Sup-
pose that whenever three primitive ideals contain the same Glimm ideal their intersection is primal.
By Theorem 5.4, K (A) = 3. Since A is non-commutative, K (A) > K, (A) > § so K, (A) = 5. The
converse of (1) follows from Theorem 5.5.

Suppose that whenever two primitive ideals contain the same Glimm ideal their intersection is
primal, but there exist three primitive ideals containing the same Glimm ideal whose intersection is
not primal. Then, by Theorem 5.3, K, (A) = % and, by Theorem 5.5 and Theorem 5.6, K (A) =
1/v/3. Conversely, if K (A) = 1/v/3 and K, (A4) = 3, then every pair of primitive ideals containing
the same Glimm ideal has primitive intersection by Theorem 5.3, but there exist three primitive ideals
containing the same Glimm ideal with non-primal intersection to avoid contradicting Theorem 5.4.
This proves (2).

Finally, (3) follows immediately from Theorem 5.3. O

We now give some examples to show that each of the possibilities in Theorem 5.7 occur.

Example 5.8. Let H be a separable infinite-dimensional Hilbert space. As shown in [20], page 747,
the only ideals of B (H) are {0}, K (H) and B (H) where K (H) is the C*-algebra of compact linear
operators. The identity map on B (H) is an irreducible representation so {0} is a primitive ideal
The hull of K (H) is non-empty, but the only possible element is K (H), so K (H) is a primitive
ideal. Hence

Prim B (H) = {{0} ,K (H)}.

Since Prim B (H) is closed under intersection and primitive ideals are primal, it follows that every
intersection of primitive ideals is primal. Thus K (A) and K, (A) are 3. This agrees with the results
of [33] as described in Chapter 3.

The following example is given in [31], Example 3.5.

Example 5.9. Let A be the set of sequences (a,) in My (C) such that the subsequences (as,),
(agr+1) and (asr+2) converge in My (C) to matrices of the form

(" ) (07 a0 ) (%7 )

for some complex numbers g (a), A1 (@) and A2 (a). With pointwise defined operations and the
supremum norm, A is a C*-algebra. Define a *-homomorphism 7, : A — M5 (C) to be the natural
map giving the n** term of A. Clearly =, is surjective and it is elementary to check that M, ((C)' is
C1. Hence 7, is an irreducible representation of A and P, is a primitive ideal where

P,=kerm,={a€A:a, =0} n € N.
Define three characters on A by
zj(a) = A; (a) j=0,1,2.
Then Qq, Q1 and Q4 are also primitive ideals of A where

Qj =kerz;={a € A:)\j(a) =0} j=0,1,2.
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It can be shown that these are all the primitive ideals of A. Recall from our discussion of Glimm
ideals that two primitive ideals contain the same Glimm ideal if and only if their intersections with
the centre agree. It is easy to check that

Z(A)={(zn) € A: z, € Z (M5 (C)) Vn € N},

and that
P,NZ(A)=P,NZ(A) <& n=m.

Similarly,
P,NZ(A)#Q,NZ(A) j=0,1,2

so P, is the only element of [P,], and hence the P, are all Glimm ideals. Recall that, for all a in

M2 ((C)’

la]l = sup {[lazx] : x € C*, ]| =1}

> \/|@11|2 + laz |, \/|“12|2 + |ass |’

> lai1], la2i|, |aiz|, |age|.

Let (a,,) be an element of A. Then

azn — < /\lo(a) )\20(a) )H —+0asn— o0

S0 (a‘;”f) converges to A1 (a) and (a%?) converges to A2 (a). Let U be an open neighbourhood of @,
and let C' be the closed set Prim A\U. Suppose that, for all natural numbers n, there exists N,
greater than n such that Psy, lies in C. Then (Psy, ) is a sequence in C and ker C is a subset of I,
where
I=() Ps,-
neN

Let (a,,) be an element of I. Then asy, is zero for each n in N. Thus
A (@) = lim (aff) = lim (afl) =o0.

This implies that I is a subset of @)1 and hence that (), lies in C which is a contradiction. Therefore
there exists ng in N such that Psy, lies in U for all n greater than ng. We have shown that Psy,
is a net in Prim A converging to ;. Similarly Py, converges to Qo. It is clear that {Qq, @2} is
the hull of @1 N Q2 so it follows from Theorem 2.7 that ()1 N Q2 is primal. Similarly Q2 N Qo and
Qo NQ; are primal. Hence @y, @1 and Q2 all belong to the same equivalence class and are the only
ideals in this class. The only distinct primitive ideals which contain the same Glimm ideal are @y,
Q1 and Q2. As we have seen any two of these have primal intersection. Define

Ij = NnenPantj Jj=0,1,2.

Then Iyl 15 is zero but
I ¢ Q1, Iy € Q, I3 € Qs.

Hence, Qo N @1 N @2 is not primal. Thus, by the characterisation theorem,
Theorem 5.7, K¢ (A) = % and K (A) = %

The final example is the author’s own modification of Example 5.9. See also [32], Example 2.8.

Example 5.10. Let A be the set of sequences (a,,) in Ms (C) such that the subsequences (aq,),
(agr41), (a4r42) and (aqr43) converge in Ms (C) to matrices of the form

( Aléa) /\2(261) ) < /\QO(G) >\30(a) >
(M7 st ) (% W50 )
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for some complex numbers Ag (a), A1 (a), A2 (a) and A3 (a). With pointwise defined operations and
the supremum norm, A is a C*-algebra. As above, Qg, Q1, Q2 and Q3 are primitive ideals of A
where

Qj=kerz; ={ac A:)\(a) =0} j=0,1,2,3

and Q1 NQ2, Q2N Q3, Q3N Qp and Qo N Q1 are primal and hence contain the same Glimm ideal.
Define

Ij = mnENPZin-‘rj J=0,1,2,3.
Then I0[1[QI3 = {0} but

In € Qs3,Qo, I € Qo,Q1, I, € Q1,Q, I3 € Q2,Q3

S0 Qo N Q2 and @1 N Q3 are not primal. Hence by the characterisation theorem, Theorem 5.7,
K (4) > K, (A) > 1.
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Chapter 6

Related Results

In this chapter we present a brief survey of other results concerning K (A) and K, (A), and consider
how they relate to the theory developed in this paper. Proofs will not always be given.

First, we recall some definitions. A C*-algebra A is said to be quasicentral if no primitive ideal
of A contains Z (A). Clearly all unital C*-algebras are quasicentral. An equivalence relation is said
to be open if the quotient map is open. Let X is a subspace of a Banach space Y. Then X is said
to be proximinal if, for each ¢ in Y, there exists x in X such that

lz —yll =d(y,X).

Let A be a C*-algebra. We define a relation ~ on Prim A by P ~ @ if and only if P and Q
cannot be separated by disjoint open sets. Clearly ~ is reflexive and symmetric, but is not necessarily
transitive. By Corollary 2.8, P ~ @ if and only if P N @ is primal. It is easy to see that if P ~ @
then P =~ @, but the converse is false. However, [30], Proposition 3.2, states that if A is quasicentral
and ~ is an equivalence relation then ~ and ~ agree on Prim A. It is easy to check that for A
quasicentral ~ is an equivalence relation if and only if whenever two primitive ideals contain the
same Glimm ideal then their intersection is primal. The relations also agree when every Glimm ideal
is primal [30].

The class of C*-algebras for which ~ is an open equivalence relation are termed quasi-standard
[7], Section 1. The quasi-standard C*-algebras include von-Neumann algebras, AW*-algebras, pre-
standard algebras, C*-algebras for which the Jacobson topology is Hausdorff and a number of group
C*-algebras. They have important connections to the problem of representing a C*-algebra as an
algebra of cross sections over a base space. Specifically, a separable C*-algebra is quasi-standard if
and only if it is *-isomorphic to a maximal full algebra of cross sections over a base space such that
the fibre algebras are primitive throughout a dense subset (see [7] and [30] for details).

The relation ~ also proves important in determining information about K (A) and K (A). Let
the primitive ideals of a unital C*-algebra A be the nodes of a graph with points P and @) connected
if and only if P ~ ). The distance between nodes is the length of the shortest path or infinity if
no such path exists. The diameter of a set of nodes is the supremum of the distances between the
nodes, with the non-standard convention that the diameter of a singleton set is 1. Then we define
Orc A to be the supremum of the diameters of the connected components of the graph of Prim A
[32], Section 2. The following important theorem is the main result of [32].

Theorem 6.1. Let A be a non-commutative unital C*-algebra. Then

K, (A) = %Orc A.
Since Orc A is a positive integer or infinity it follows that K (A) is of the form %, with n a
natural number, or infinity. Examples are given in [32], Example 2.8, to show that all of these values
oceur.
If ~ is an equivalence relation on Prim A then, by transitivity, the shortest path between two
connected points P and @ is P ~ @ and Orc A is 1. Conversely, if Orc A is 1 and, for distinct
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primitive ideals P, @ and R, P ~ @ and @ ~ R, then the shortest path between P and R has unit
length, and therefore P ~ R. Hence, if A is a non-commutative unital C*-algebra, K (A) = % if
and only if ~ is an equivalence relation, if and only if whenever two primitive ideals contain the
same Glimm ideal their intersection is primal. Otherwise Orc A > 2 so K (A) > 1. Hence we have
deduced Theorem 5.3 from Theorem 6.1.

Let A be a von-Neumann algebra. Recall that non-trivial von-Neumann algebras are always
unital [23], Theorem 4.1.7. In [36], Zsid6 showed that the function I, — A(ak,) is continuous on
Prim Z (A). Then by Theorem 2.12, there exists z% in Z (A) such that A (ax,) — z* lies in I, for all
x in A (Z (A)). Since each Glimm ideal K, contains I,

Alag) = z¢;

for all G in Glimm A. Furthermore, Zsid6 showed that the norm of a — 2% equalled the distance of a
from Z (A), i.e. that Z (A) was proximinal in A. In [31], Corollary 2.5, Somerset extends this result
to show that Z (A) is proximinal for any quasi-standard C*-algebra. The question of whether Z (A)
is proximinal for a general C*-algebra is open [31].

Using this result and [17], Theorem 4.7, which states that every Glimm ideal of a von-Neumann
algebra is primitive, Zsidé argued:

2d(a, Z (A)) = 2 la — 27|
=2sup{|lag — A (ag)| : G € Glimm A}
<2sup{|lap — A(ap)| : P € Prim A}
= lladaall .
Hence K (A) < 1 so it was shown that, for a non-commutative von-Neumann algebra, K (A) =

Somerset generalised this to the following (3
Theorem 2.7).

ol

Theorem 6.2. Let A be a non-commutative unital C*-algebra. If every Glimm ideal of A is primal

then K (A) = 1.

Proof. By Theorem 3.11 and Proposition 4.4,

2d (a, Z (A)) = 2sup{|lac — A (ag)|| : G € Glimm A}
<2sup{|lap — A(ap)| : P € Primal A}
= |ladaal| .

Then K (A) < % and hence K (A) = O

1
E.

Of course, if every Glimm ideal is primal, every intersection of primitive ideals containing the
same Glimm ideal is primal, so we can recover this result from the categorisation theorem, Theorem
5.7.

By [7], Theorem 3.3, equivalence of (i) and (iv), if A is a quasi-standard C*-algebra then Glimm A
is the set of minimal primal ideals. In [31], Lemma 2.8, it is shown that if A is a quotient of a AW*-
algebra then each Glimm ideal is prime. Hence we have [31], Corollary 2.9.

Corollary 6.3. Let A be a non-commutative unital C*-algebra. If A is quasicentral or a quotient

of an AW*-algebra then K (A) = 3.

We now consider a connection between K (A) and the theory of derivations of a C*-algebra A.
We begin with some definitions and technical results.
A derivation on a C*-algebra A is said to be a *-derivation if

D (a*) = D(a)"

for all @ in A. Let X and Y be normed spaces, and let T be a linear operator, with domain D (T)
in X and range R (T) in Y. Then T is said to be closed if, whenever (z,) is a sequence in D (T'),
convergent to x in X, such that (Tz,) converges to some y in Y, then z lies in D (T") and Tz is y.
The following is the well known Closed Graph Theorem [22], Theorem 4.13-2.
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Theorem 6.4. Let X and Y be Banach spaces and T a closed linear operator with domain in X
and range in' Y. If D (T) is closed in X, then T is bounded.

The next two results are from the proof of [29], Theorem 2.3.1.

Lemma 6.5. Let a be a self adjoint element of a unital C*-algebra A. Then there exists a state x
such that |x (a)| equals ||a||, and, for any such state, x (D (a)) is zero for every *-derivation D on

Proof. Since a is self adjoint, ||a|| lies in its spectrum, and, by Lemma 3.2, such an x exists. Consider
the case x (a) equals ||la||. By the functional calculus ||a| — a is positive. Hence it is equal to b? for
some positive b. Since D (1) is zero for any derivation,

|=z (D ()| = [z (D (lal| = a))|
= |z (D (%))

< |z (bD (b))| + |z (D (b) b)|
By the Schwarz inequality,

|z (bD (b)[* < @ (bb*) 2 (D (b)" D (b))
z(llal - a)z (D (®)°)
=0.

Similarly for |z (D (b)b)|. Hence z (D (a)) is zero. In the case z (a) equals — ||a||, replace a with
—a. O

Corollary 6.6. Let A be a unital C*-algebra, D a *-derivative and (a,) a self adjoint sequence in
A such that (a,) converges to zero and (Day,) converges to b in A. Then b is zero.

Proof. Since D is a *-derivative and Ay, is norm closed, (b+ a,,) is a self adjoint sequence and there
exists a sequence (x,) of states such that, for all n in N,

1o+ an| =2n (b+an) .

Since S, is weak*-compact, by [21], Chapter 5, Theorem 2, there is a subnet (2y,),cp of (2n),
weak*-convergent to some state x. For all X in A,

[z (@) = [I6l[] < [l (B)] = |zny (0 + an)I| +[|2n, (b+ an, )| = [0l
< (b) = 2y (b4 any)| + [0+ an, | = [0l
<2 (0) = @ny (O)] + |20y (@ny)] + [lan, |
<o (0) = @ny (O) + 2 [lan, |-

Since (z,, ) weak*-converges to x and (a,, ) converges to zero it follows that |z (b)| equals ||b]|. Now,
Lemma 6.5 implies that « (D (b)) is zero and that x,, (D (b+ ay)) is zero for each n in N. Hence, for
all n in N,

|z (O)] <[ (b= D (an))| + [ (D (an))|
<o =D (an)|| + |z (D (b+ an))|.

Given € > 0, there exists A in A such that

= [(@ = 2n,) (D (b +an))| < 3

and, hence,
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We are now able to prove the following important conjecture of Kaplansky. This was proved by
Sakai in [28].

Theorem 6.7. Let A be a unital C*-algebra and let D be a derivation on A. Then D is bounded.

Proof. Since every sequence can be decomposed into a complex sum of self adjoint sequences, Corol-
lary 6.6 extends by linearity to any sequence convergent to zero. Using linearity again shows that any
*_derivation D is a closed linear operator with closed domain A. Hence, by the closed graph theorem,
Theorem 6.4, it is bounded. Any derivation D may be decomposed into a complex sum of *-

derivatives by
‘D * *_ ‘D
D(a) = ; +¢(Z (a)2 ! (“)>.

Since the *-derivations are bounded it follows that D is bounded. O

D (a*)" + D (a)

It is now easy to check that A (A), the set of all derivations on A, is a closed vector subspace of
B (A) and is hence a Banach space.

We now show that the value of K (A) determines whether Aj (A), the set of all inner derivations
of A, is norm-closed in A (A). This is implicit in [18], Theorem 5.3. This result is also of historical
importance, as it presumably inspired the definition of K (A).

Theorem 6.8. Let A be a unital C*-algebra. Then Ag (A) is norm closed in A (A) if and only if
K (A) is finite.

Proof. Let Z be the centre of A and let ¢ : A/Z — Ag (A) be the map
Y(az) =adya
for a in A. It is easy to check that ¢ is a well defined linear bijection. Since
I (az)ll = llada al] < 2d(a, Z (4)) = 2 Jazl],

¥ is bounded, and, since its domain is A/Z, it follows that 1) is a closed linear operator. It then
follows from the definition that =% : Ag (A) — A/Z is a closed linear operator.

Now suppose that Ag (A) is norm closed in A (A). Then, by the closed graph theorem, Theorem
6.4, 9! is bounded and

d(a 2 (4) = [~ (daa)]| < [0 fadaal

for all @ in A. Hence K (A) is finite.
Conversely, suppose that K (A) is finite. Then, for all a in A,

3lladaall < Jlazll = d(a, Z (4)) < K (A) adaa] -
Thus, the norm defined on Ay (A4) by
ladaall, = [laz|

for a in A is equivalent to the norm induced by A (A4). Since A/Z is a Banach algebra it follows
that Ag (A) is norm closed in A (A4). O

In [8], Batty investigated how properties of the derivations of two C*-algebras relate to the
properties of the derivations of their C*-tensor products. Of particular interest to us is the following
result. Let A ®3 B be any C*-tensor product of C*-algebras A and B. Then

K (A®g B) < 4K (A) + 2K (B) + 4

where, without loss of generality, we may interchange A and B to get the smaller bound. Archbold
[3] had independently obtained the estimate

K (A®g B) < 2K (A) + K (B) + 4.
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Batty also proved [3],
K(A®pB) <1+ (2K (A)+1)(2K(B)+1),

which gives a smaller bound when K (A) and K (B) are close to 3. The significance of these
inequalities with respect to Theorem 6.8 is that they show that if K (A) and K (B) are finite then
K (A ®g B) is finite, i.e. if Ag (A) and Ag (B) are norm closed in A (A) and A (B) respectively then
Ay (A®p B) is norm closed in A (A ®g B) for any C*-tensor product A ®g B.

Archbold also investigated the behaviour of K (A) under ideals and quotients in [3]. He gave
an example of a C*-algebra with ideal J such that K (4) was 1 but K (A/J) was infinite. In fact,
as was observed in [30], K (A) is very unstable under quotients. Every unital C*-algebra A may
be considered as a quotient of a unital quasi-standard C*-algebra B [30], Proposition 3.7, but then
K (B) is § regardless of the value of K (A). However Archbold [3], Proposition 3, showed that for
ideals, the following holds:

Proposition 6.9. If A is a C*-algebra and J is an ideal
llad aall = [lad sall

for all a in J. It then follows that
K (J)<2K(A).

Since we have concentrated on unital C*-algebras in this paper, it is useful to know that Propo-
sition 6.9 implies that, for a non-unital C*-algebra A,

LK (A) < K(A+Cl) < K (A).

Somerset improves on this result when J is quasicentral in [30], Proposition 5.3, where he shows
that
d(a,Z(J)) = d(a,Z (A))

for all @ in J. Combining this with Proposition 6.9 shows that
d(a,Z(J)) = d(a, Z (A)) < K (A) |adaal = K (A) [lad s al

for all @ in J, from which it follows that K (J) < K (A). Hence, if A is a non-unital quasicentral
C*-algebra,
K(A)<K(A+Cl)<K(A)),

so the problem of computing K (A) is reduced to the unital case.
A C*-algebra is weakly central if for maximal ideals M and N of A

MnNnZ(A)=NnZ(A)< M=N.
Archbold proves the following result in [3], Theorem 4.1, using Katetov’s interpolation theorem.

Theorem 6.10. Let A be a weakly central unital C*-algebra and let J be an ideal of A. Then for
self adjoint a in J there exists self adjoint z in Z N J such that

la —z|| < [ladaall
In particular K, (A) < 1.

Somerset [30], Theorem 4.1, uses Helly’s Theorem to show that, when A is weakly central, K (A),
and hence K (A), are bounded above by 1.
Example 5.9 shows that K (A) and K, (A) may have different values. As shown in Chapter 1,

K (4)
K, (4)

<2



Somerset [30] conjectures that
K (A) 2

K.(4) = V3

the value achieved in Example 5.9. He shows in [30], Proposition 5.15, that

where K, (A) is the least element of [0, co] such that
d(a, Z(A)) < Kn (A) lada al|

for all normal a in A. He further observes that there is no known example for which K, (A) and K (A)
disagree. This might suggest the conjecture that K, (A) and K (A) are always equal. However, the
lack of a counter example is more likely to be due to the lack of tools for calculating K, (A) and
K (A) in general. When A is a unital C*-algebra and K (A) is bounded above by 1 we can make
the following remark (apparently not stated elsewhere).

Remark 6.11. Let A be a unital C*-algebra with K (A) bounded above by 1. Then K (A) and
K, (A) are equal.

Proof. By the categorisation theorem, Theorem 5.7, K (A) and K, (A) agree if K (A) is 1 or 1.
This forces K,, (A) to agree with K (A) and K, (A). Re-examining the proof of Theorem 5.5 we see
that we in fact proved that when A is a unital C*-algebra with three primitive ideals containing
the same Glimm ideal which have non-primal intersection then K, (A) is bounded below by 1/+/3.
Since K (A) is 1/4/3 in this case we have

K (A) = K, (4) =

s
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