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Abstract

Let A be a unital C*-algebra. For a in A, let adA a denote the inner derivation induced on A by a,
and let d (a, Z (A)) denote the distance from a to the centre of A. Define K (A) and Ks (A) to be
the least elements of [0,∞] such that, for all a in A,

d (a, Z (A)) ≤ K (A) ‖adA a‖

and, for all a in Asa,
d (a, Z (A)) ≤ Ks (A) ‖adA a‖ .

An exposition of Dr Somerset’s investigation of these constants is given. In particular, a theorem
connecting the values of K (A) and Ks (A) to certain intersection properties of the primitive ideals
of A is proved. The connection between this work and related results is briefly discussed.
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Chapter 1

Introduction

Let A be an algebra. A linear map D from A to A is said to be a derivation if, for all a and b in
A, it satisfies the Leibnitz equation

D (ab) = D (a) b+ aD (b) .

For a in A, define the adjoint map adA a from A to A by

(adA a) (b) = [a, b] = ab− ba

for all b in A. It is easy to check that adA a is a derivation. Derivations of this form are known as
inner derivations.

Let A be a Banach algebra. Then, for all a and b in A,

‖(adA a) (b)‖ = ‖ab− ba‖ ≤ 2 ‖a‖ ‖b‖ .

Hence adA a is bounded and
‖adA a‖ ≤ 2 ‖a‖

for all a in A. Let d (a, Z (A)) be the distance from a to the centre Z (A) of A. For z in Z (A), adA a
equals adA (a+ z). Thus, for all a in A,

‖adA a‖ ≤ 2d (a, Z (A)) (1.1)

In [33], Stampfli showed that, when A is a primitive unital C*-algebra, equality holds in 1.1 for
all a in A. In particular, equality holds when A is B (H), the C*-algebra of bounded operators on
a Hilbert space H. The results of [33] are essential for the further development of the theory, so an
exposition is given in Chapter 3. Zsidó used the work of Stampfli in [36] to show that equality holds
in 1.1 when A is a von-Neumann algebra. In [31], Somerset generalised Zsidó’s result. The details
are given in Chapter 6.

However, there are C*-algebras where the inequality 1.1 is strict. To study the inequality further,
Archbold [3] introduced the constants K (A) and Ks (A), defined to be the least elements of [0,∞]
such that, for all a in A,

d (a, Z (A)) ≤ K (A) ‖adA a‖ ,

and, for all a in Asa,
d (a, Z (A)) ≤ Ks (A) ‖adA a‖ ,

where A is a C*-algebra and Asa is its self adjoint part. Additional constants can be analogously
defined for other subsets of A. We see that, for all a in A,

d (a, Z (A)) ≤ d
(

1
2 (a∗ + a) , Z (A)

)
+ d

(
i
2 (a∗ − a) , Z (A)

)
≤ Ks (A)

∥∥adA
1
2 (a∗ + a)

∥∥+Ks (A)
∥∥adA

i
2 (a∗ − a)

∥∥
≤ 1

2Ks (A) (2 ‖adA a
∗‖+ 2 ‖adA a‖)

= 2Ks (A) ‖adA a‖ .
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Therefore,
0 ≤ Ks (A) ≤ K (A) ≤ 2Ks (A) .

Since Asa linearly generates A, if Ks (A) is zero, A is commutative. If A is non-commutative then
there exists a in A such that

0 < ‖adA a‖ ≤
∥∥adA

1
2 (a∗ + a)

∥∥+
∥∥adA

i
2 (a∗ − a)

∥∥ ,

and hence ‖adA b‖ is non-zero for some b in Asa. Furthermore,

‖adA b‖ ≤ 2d (b, Z (A)) ≤ 2Ks (A) ‖adA b‖ ,

and
K (A) ≥ Ks (A) ≥ 1

2 .

Clearly, when A is a non-commutative C*-algebra, K (A) and Ks (A) have the value 1
2 if and

only if equality holds in 1.1 for all a in A or for all a in Asa respectively. It was shown by Kadison,
Lance and Ringrose in [18], Theorem 5.3, that the set of inner derivations of A is norm closed in
the set of derivations of A if and only if K (A) is finite. Archbold [3] studied the stability of K (A)
and Archbold [3] and Batty [8] investigated K (A⊗β B) where A ⊗β B is a C*-tensor product of
C*-algebras A and B. In [32], Somerset showed that Ks (A) is always of the form n

2 , for some natural
number n, or infinity. These results are described in more detail in Chapter 6.

In this paper we give an exposition of Somerset’s work ([30], [31], [32]) on characterising C*-
algebras by the values of K (A) and Ks (A). For simplicity, attention is restricted to the unital case.
The reader is assumed to be familiar with basic C*-algebra definitions and facts, such as might be
given in a first course.

In the second chapter of this paper we review some standard facts about representations of a
unital C*-algebra A. We introduce SpecA, the spectrum of A, and IdA, the set of closed two-sided
ideals of A. The subsets PrimA, GlimmA and PrimalA of IdA are defined and some of their
topologies discussed. A new, easy proof of Proposition 4.5 of [4] is given (Proposition 2.9).

In the third chapter we give an exposition of the main results of [33]. It is shown that each element
a of A has a closest scalar λ (a) which satisfies the Pythagorean relation for operators (Theorem
3.4). The proof given is a modification of the proof in [33] and does not seem to have been given
before. The circumcircle of the spectrum is introduced and used, with the functional calculus, to
find λ (a) and ‖a− λ (a)‖ for particular a. These examples are used in later proofs. An expression
for ‖adA a‖ when A is primitive is given (Theorem 3.8) and an important formula for d (a, Z (A)) is
found (Theorem 3.11).

In the fourth chapter the pure functionals of A and a numerical range UA (a), introduced in [30],
are discussed. Inequalities connecting λ (a) and the circumcentre of UA (a) are proved (Lemma 4.5)
and an important expression for ‖adA a‖ is given (Proposition 4.4).

In the fifth chapter the results built up in the previous sections are used to prove the main
characterisation theorem (Theorem 5.7). We see that, for a unital C*-algebra A, the possible values
of K (A) and Ks (A) fall into four cases:

(i) K (A) = Ks (A) = 0;

(ii) K (A) = Ks (A) = 1
2 ;

(iii) K (A) = 1√
3
, Ks (A) = 1

2 ;

(iv) K (A) ≥ Ks (A) ≥ 1.

The cases are characterised by certain intersection properties of the primitive ideals of A.
In the sixth chapter we present a brief review of other results on Archbold constants, which are

of relevance to this paper.
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Chapter 2

Preliminaries

In this chapter we present a brief review of some well known facts about representations of unital
C*-algebras. For a more detailed presentation, see, for example, [19], [23] or [27]. We then introduce
the spaces SpecA, PrimA and GlimmA and some of their topologies.

The set of all closed two-sided ideals of a unital C*-algebra A is denoted by IdA. We will follow
convention and use the word ideal to mean a closed two-sided ideal. It can be shown that every
element of IdA is a C*-subalgebra of A and contains an approximate unit, see [23], Theorems 3.1.1
and 3.1.3.

A representation of a unital C*-algebra A is a pair (π,H), where H is a Hilbert space and π is
a *-homomorphism π : A → B (H). If π is injective then the representation is said to be faithful.
If ξ is an element of H such that π (A) ξ is dense in H, then the representation is said to be cyclic
with cyclic vector ξ. Let π (A)

′
be the commutant of π (A), that is the set of elements of B (H)

which commute with every element of π (A). Then (π,H) is said to be irreducible if π (A)
′

is the
set of scalar multiples of 1H . The set of non-zero irreducible representations of A is denoted IrrA.

The set π (A) is the image of a *-homomorphism and π (A)
′
is a norm-closed *-subalgebra. Hence

both are C*-subalgebras of B (H). If (π,H) is cyclic, π (1) is the identity on π (A) ξ and hence on
H. As for any *-homomorphism, ‖π (a)‖ ≤ ‖a‖.

Let x be an element of the state space SA of A. It is easy to check that the set

Lx = {b ∈ A : x (b∗b) = 0}

is a closed left ideal of A, and that, for all a and b in A,

〈a+ Lx, b+ Lx〉 = x (b∗a)

is a well-defined inner product on A/Lx. Let Hx be the completion of A/Lx and let πx (a) denote
the unique extension of the well-defined map b+Lx → ab+Lx to Hx. Then πx (a) is an element of
B (Hx) and πx : a → πx (a) is a *-homomorphism. Thus (πx, H) is a representation of A. Denote
1 + Lx by ξx. Then ξx is a cyclic vector of unit norm and x is recovered by the expression

x (a) = 〈πx (a) ξx, ξx〉

for a in A. The representation (πx, Hx) is called the Gelfand-Naimark-Segal or GNS represen-
tation.

Let (π,H) be a representation of A. For ξ in H, define ωξ in B (H)
∗

by

ωξ (T ) = 〈Tξ, ξ〉

for T in B (H) . Recall that T is a positive element of a C*-subalgebra of B (H) if and only if 〈Tξ, ξ〉
is positive for all ξ in H, [19], Theorem 4.2.6. Thus, ωξ|π(A) is an element of π (A)

∗
+. If ξ is of norm

1 and (π,H) is cyclic then ωξ lies in the unit ball, 1H lies in π (A) and ωξ (1H) is 1. Hence, ωξ|π(A)

is a state of π (A). Such an element of Sπ(A) is said to be a vector state of π (A).
Let ∂eSA be the set of pure states of A. The following proposition may be found in [19], Theorem

10.2.3.
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Proposition 2.1. Let x be an element of SA. Then (πx, Hx) is an element of IrrA if and only if
x is an element of ∂eSA.

Proof. Suppose that x is an element of ∂eSA. Let S be a positive element of the unit ball of πx (A)
′
.

Since (πx, Hx) is cyclic and ξx has norm 1, it follows that z = ωξx |πx(A) is a vector state of πx (A).
Let y be the element of πx (A)

∗
+ given by

y = ω
S

1
2 ξx
|πx(A).

For T in πx (A)+, the commutivity of S
1
2 and T

1
2 implies that:

y (T ) =
∥∥∥S 1

2T
1
2 ξx

∥∥∥ ≤ ∥∥∥S 1
2

∥∥∥ ∥∥∥T 1
2 ξx

∥∥∥ ≤ z (T )

Thus y and z − y lie in πx (A)
∗
+, and it follows that there exist states x1 and x2 of πx (A) , and

positive real numbers a1 and a2, such that

y = a1x1, z − y = a2x2.

Since 1H lies in πx (A), we may evaluate z = a1x1+a2x2 at 1H to find that a1+a2 = 1. Furthermore,

z ◦ πx (a) = 〈πx (a) ξx, ξx〉 = x (a) ,

and
x = a1 (x1 ◦ πx) + a2 (x2 ◦ πx) .

We also have that xi ◦ πx lies in SA, because ‖xi ◦ πx‖ ≤ 1 and

xi ◦ πx (1) = xi (1H) = 1.

Since x is pure it follows that y = a1z. For P and Q in πx (A),

〈SPξx, Qξx〉 =
〈
Q∗PS

1
2 ξx, S

1
2 ξx

〉
= y (Q∗P )

= a1z (Q∗P )

= a1 〈Pξx, Qξx〉

Hence S coincides with a11Hx on π (A) ξx. Since π (A) ξx is dense in Hx we have that S is a scalar
multiple of 1H . Finally, the positive elements of the unit ball of πx (A)

′
linearly generate πx (A)

′
,

which implies that πx (A)
′

is C1H .
Conversely, suppose that (πx, Hx) is irreducible. Assume that

x = tx1 + (1− t)x2

for some x1 and x2 in SA and t in (0, 1). Define σ : π (A) ξx × π (A) ξx → C by

σ (πx (a) ξx, πx (b) ξx) = tx1 (b∗a)

for a and b in A. Since

|tx1 (b∗a)|2 ≤ tx1 (a∗a) tx1 (b∗b)

≤ x (a∗a)x (b∗b)

= ‖πx (a) ξx‖2 ‖πx (b) ξx‖2

we see that σ is well defined and
|σ (ξ, η)| ≤ ‖ξ‖ ‖η‖
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for all ξ and η in πx (A) ξx. Thus σ is continuous in each variable. It is also sesquilinear. Then for
ξ and η in πx (A) ξx, the map ξ → σ (ξ, η) is a linear functional. Extending to Hx and applying the
Riesz representation theorem shows that, for each η in πx (A) ξx, there exists a unique ζη in Hx such
that ‖ζη‖ ≤ ‖η‖ and

σ (ξ, η) = 〈ξ, ζη〉

for all ξ in πx (A) ξx. Define T : πx (A) ξx → Hx by

Tη = ζη

for η in πx (A) ξx. Then T is bounded and

σ (ξ, η) = 〈ξ, Tη〉

for all ξ and η in πx (A) ξx. By the uniqueness of ζη we see that T is linear on πx (A) ξx. Thus, we
may extend T to an element of B (H). Since x1 lies in A∗+, it is self-adjoint. Thus, for a and b in A,

σ (πx (b) ξx, πx (a) ξx) = tx1 (a∗b)

= tx1 (b∗a)

= σ (πx (a) ξx, πx (b) ξx) .

Hence, for all ξ and η in πx (A) ξx,

〈T ∗ξ, η〉 = 〈ξ, Tη〉 = 〈Tξ, η〉 .

By continuity this expression holds for all η in Hx and it follows that T is self-adjoint on πx (A) ξx
and hence on Hx. Let a, b and c be elements of A. Then

〈(πx (a)T − Tπx (a))πx (b) ξx, πx (c) ξx〉 = 〈πx (b) ξx, Tπx (a∗c) ξx〉
− 〈πx (ab) ξx, Tπx (c) ξx〉
= tx1 (c∗ab)− tx1 (c∗ab)

= 0.

Therefore, using continuity again,

〈(πx (a)T − Tπx (a)) ξ, η〉 = 0

for ξ in πx (A) ξx and η in Hx. It follows that, for all a in A,

πx (a)T = Tπx (a) .

Thus T is in π (A)
′

sa and, by hypothesis, T = λ1Hx for some λ in R. Thus

tx1 (b∗a) = λx (b∗a) .

When b is equal to 1
tx1 (a) = λx (a)

for all a in A. Evaluating when a is 1 then shows that λ equals t so that x1 agrees with x. Thus x
is pure.

Proposition 2.1 shows that there exists a map Ξ : ∂eSA → IrrA given by x→ (πx, Hx).
Let H1, H2 be Hilbert spaces. An element U in B (H1, H2) is said to be unitary if U is a surjective

isometry. Representations (π1, H1) and (π2, H2) are said to be unitarily equivalent if there exists a
unitary U in B (H1, H2) such that, for all a in A,

π2 (a)U = Uπ1 (a) .
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Unitary equivalence is clearly a reflexive and transitive relation. To see that it is symmetric, note
that ‖Uξ1‖ = ‖ξ1‖ implies that 〈ξ1, (U∗U − I) ξ1〉 is zero for all ξ1 in H1. By [22], Lemma 3.9-3 (b),
U∗U is the identity, and, with surjectivity of U , this implies that UU∗ is also the identity. Hence
U∗ is unitary, and, for all ξ1 in H1 and ξ2 in H2,

〈π1 (a)U∗ξ2, ξ1〉 = 〈ξ2, Uπ1 (a∗) ξ1〉
= 〈ξ2, π2 (a∗)Uξ1〉
= 〈U∗π2 (a) ξ2, ξ1〉 .

Therefore π1 (a)U∗ equals U∗π2 (a) for all a in A.
Define the spectrum of A, denoted SpecA or Â, to be the set of unitary equivalence classes of

IrrA. Then there exists a mapping p≈ ◦ Ξ : ∂eSA → SpecA where p≈ is the quotient map. We will
now show that p≈ ◦ Ξ is surjective.

Lemma 2.2. Let (π,H) be an irreducible representation. Let V be a closed subspace of H, invariant
under π. Then V is zero or H.

Proof. Since V is a closed subspace, H = V ⊕ V ⊥. Let p be the natural projection onto V . For any
η in V ⊥ we have

〈π (a) η, ξ〉 = 〈η, π (a∗) ξ〉 = 0

for all a in A and hence V ⊥ is π-invariant. Since

pπ (a) (ξ1 + ξ2) = π (a) ξ1

= π (a) p (ξ1 + ξ2)

for all a in A, ξ1 in V and ξ2 in V ⊥, p lies in π (a)
′
. This implies that

p = p2 = λ1H .

Thus, λ (λ− 1) is zero and p is zero or the identity. Therefore V is zero or H since p coincides with
the identity on V .

Corollary 2.3. Let (π,H) be an element of IrrA. Then every non-zero element of H is a cyclic
vector.

Proof. Let ξ be an element of H. Then π (A) ξ is a subspace of H. If (π (an) ξ) is a sequence,
norm-convergent to η in π (A) ξ, then

‖π (a) η − π (aan) ξ‖ ≤ ‖π (a)‖ ‖η − π (an) ξ‖

and the right-hand side converges to zero. Hence π (A) ξ is π-invariant and π (A) ξ is zero or H. By
linearity and continuity of each π (a)

N =
⋂
a∈A
{ξ ∈ H : π (a) ξ = 0}

is a closed vector subspace . Since π (a) ξ is zero for all a in A and ξ in N , and zero lies in N , N is
π-invariant. Then N is zero as π is non-zero. Finally, π (A) ξ is zero if and only if π (A) ξ is zero, if
and only if ξ is zero, so every non-zero ξ in H is cyclic.

Theorem 2.4. For each element (π,H) in IrrA, there exists an element x of ∂eSA such that (π,H)
is unitarily equivalent to (πx, Hx).

Proof. Since H is non-trivial it has a vector η of unit norm. Let x = ωη ◦ π be a state of A. Define
U : π (A) η → πx (A) ξx by

Uπ (a) η = πx (a) ξx
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for a in A. Then U is linear and surjective. Furthermore, for all a in A,

‖Uπ (a) η‖2 = ‖πx (a) ξx‖2

= 〈πx (a∗a) ξx, ξx〉
= x (a∗a)

= ωη ◦ π (a∗a)

= ‖π (a) η‖2 .

Therefore U is isometric. Since, for all a and b in A,

Uπ (a)π (b) η = πx (a)πx (b) ξx = πx (a)Uπ (b) η,

Uπ (a) equals πx (a)U . Extending U to H1 preserves these properties. Since (π,H) is irreducible,
(πx, Hx) is irreducible, and, by Proposition 2.1, x is pure.

Hence we see that the mapping p≈ ◦ Ξ is surjective.
If (π1, H1) and (π2, H2) are unitarily equivalent and a is an element of kerπ1 then

π2 (a) ξ2 = π2 (a)Uξ1 = Uπ1 (a) ξ1 = 0

which implies that a is also an element of kerπ2. By symmetry, kerπ1 equals kerπ2. Since π is a
*-homomorphism, kerπ is an ideal. Thus there is a well-defined map ker : SpecA → IdA. Define
the primitive spectrum of A denoted PrimA or Ǎ to be the range of ker. Elements of PrimA are
said to be primitive ideals and clearly the mapping ker ◦pIrr ◦ Ξ is surjective. A C*-algebra A is
said to be primitive if {0} is a primitive ideal. Thus, A is primitive if and only if it has a faithful
irreducible representation. Equivalently, primitive C*-algebras are isometrically *-isomorphic to
C*-subalgebras of B (H) with commutant C1H , for some Hilbert space H.

Let kerπx be an element of PrimA, where x is an element of ∂eSA. Then πx (a)Hx is zero if
and only if πx (a)A/Lx is zero, if and only if aA is a subset of Lx. Therefore,

kerπx = {a ∈ A : aA ⊆ Lx} .

Since A is unital, this implies that kerπx is a subset of Lx. If I is an element of IdA and I is a
subset of Lx then

IA ⊆ I ⊆ Lx,
and hence I is a subset of kerπx.

An ideal I of A is said to be prime if, whenever I1 and I2 are ideals of A such that I1I2 is a
subset of I, then at least one of I1 and I2 is a subset of I. The ideal I is said to be primal if,
whenever I1 and I2 are such that I1I2 is zero, at least one of I1 and I2 is a subset of I. The set of all
primal ideals of A is denoted PrimalA. Clearly A is always prime and every prime ideal is primal.

Suppose that I1I2 ⊆ kerπx ⊆ Lx and that I2 is not a subset of Lx. Then πx (I2) ξx is πx (a)-
invariant, (πx, Hx) is an element of IrrA and πx (I2) ξx is non-zero. Hence πx (I2) ξx is Hx by Lemma
2.2 and ξx lies in πx (I2) ξx. Since I1I2 is a subset of Lx it follows that

πx (I1) ξx ⊆ πx (I1)πx (I2) ξx = πx (I1I2) ξx = {0} .

Therefore πx (I1) ξx is zero and I1 is a subset of Lx. Thus, if I1I2 is a subset of kerπx, at least one
of I1 and I2 is a subset of Lx, and hence of kerπx. We conclude that every primitive ideal is prime.

Let a be an element of (I1 ∩ I2)
+

and let (uλ)λ∈Λ be an approximate unit for I1. Then

a = lim
λ

(
uλa

1
2

)
a

1
2 ,

where uλa
1
2 lies in I1 and a

1
2 lies in I2. Hence a is an element of I1I2. This extends linearly to

I1 ∩ I2, implying that I1 ∩ I2 is a subset of I1I2. Clearly I1 ∩ I2 is also a superset of I1I2 and I1I2
equals I1 ∩ I2 for all I1 and I2 in IdA.

If S is a subset of A, define the hull of S, denoted hullS, to be the set of primitive ideals of A
containing S. If X is a subset of PrimA, define the kernel of X, denoted kerX, to be the intersection
of the ideals in X. By convention ker∅ is A. Define X to be the set hull kerX.
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Proposition 2.5. The map taking X to X̄ satisfies the Kuratowski closure axioms:

(i) ∅ = ∅;

(ii) X ⊆ X;

(iii) X = X;

(iv) X ∪ Y = X ∪ Y ;

for all subsets X and Y of PrimA. Hence the set

τJ =
{

PrimA\X : X ⊆ PrimA
}

is a topology for PrimA.

Proof. The proof is as follows:

(i) ∅ = hull ker ∅ = hullA = ∅.

(ii) Let P be an element of X. Then kerX is a subset of P which implies that P lies in hull kerX.
But hull kerX is X. Therefore X is a subset of X.

(iii) Let P be an element of X. Then P contains ker hull kerX and hence kerX. Thus P is an

element of hull kerX which is X. Thus X is a subset of X and by (2), X is a subset of X.

(iv) Let P be an element of X. Then P contains kerX ∪ Y and therefore P lies in X ∪ Y . Hence
X is a subset of X ∪ Y . Similarly for Y , so X ∪ Y is a subset of X ∪ Y . Conversely, let P be
an element of X ∪ Y . Then

P ⊇ kerX ∪ Y = kerX ∩ kerY = kerX kerY

Therefore P contains one of kerX and kerY since P is prime. Thus P is an element of X or
Y so X ∪ Y is a subset of X ∪ Y .

The topology τJ is the Jacobson or hull-kernel topology for PrimA.
.

Proposition 2.6. Let I be an ideal of a unital C*-algebra. Then

I = ker hull I.

Proof. The result is immediate if I is A. Consider I to be a proper ideal. It is obvious that I is a sub-
set of ker hull I. If a lies in A\I then aI is non-zero and there exists an element x in ∂eSA/I such that
x (aI) is non-zero
([19], Theorem 4.3.8). Then 〈πx (aI) ξx, ξx〉 is non-zero, which implies that πx (aI) is non-zero. Let
π = πx ◦ pI where pI is the quotient map. Then π (A) agrees with πx (A/I) which implies that
(π,Hx) lies in IrrA. Since π (I) is zero, kerπ lies in hull I. Since π (a) is non-zero, a lies in the
complement of kerπ and hence in the complement of ker hull I. Therefore ker hull I ⊆ I.

In particular,
ker PrimA = ker hull {0} = {0}

so the kernel of PrimA is zero. We also note that, for I proper, hull I is non-empty.
We now give a characterisation of primal ideals from [5], Proposition 3.2.

Theorem 2.7. Let I be an ideal of a C*-algebra A. Then the following conditions are equivalent:

(i) I is a primal ideal of A;

8



(ii) whenever n ≥ 1 and I1, . . . , In are ideals of A such that Ij * I for j = 1 . . . n then
∏n
j=1 Ij is

non-zero;

(iii) whenever n ≥ 1 and U1, . . . , Un are open subsets of PrimA which intersect hull I then
⋂n
j=1 Uj

is non-empty;

(iv) there is a net (Pλ)λ∈Λ in PrimA convergent to every point of hull I.

Proof. Equivalence of (1) and (2) is immediate from the definitions. Equivalence of (2) and (3) follows
from identifying IdA with the open subsets of PrimA via the bijection I → (hull I)

c
. Suppose that

(1)-(3) hold. If P is a primitive ideal of A then we can choose an open neighbourhood UP of P in
PrimA (e.g. take UP to be PrimA). Let Λ be the set of indexed sets (UP )P∈hull I such that UP is
proper for only finitely many P in hull I. Define a direction on Λ by

(UP )P∈hull I ≥ (VP )P∈hull I ⇔ UP ⊆ VP ∀P ∈ hull I.

Let (UP )P∈hull I be an element of Λ. Let P1, . . . Pn be the elements of hull I such that UPj are proper.
Then Pj lies in UPj ∩ hull I for j = 1 . . . n. By (3) we can choose a primitive ideal Pλ in

⋂n
j=1 UPj .

Let Q be an arbitrary element of hull I and let VQ be an open neighbourhood of Q. Extend this
to an element λ0 of Λ by defining VP to be PrimA for P not equal to Q. When λ ≥ λ0 we have
that Pλ lies in UQ which is a subset of VQ. Hence (Pλ)λ∈Λ converges to Q and (4) holds.

If (4) holds and U1, . . . , Un are open subsets of PrimA which intersect hull I then there exists λ0

in Λ such that Pλ lies in each Uj for λ ≥ λ0. Thus (3) holds.

The following corollary will prove useful.

Corollary 2.8. Let P1, . . . , Pn be elements of PrimA and let I be their intersection. Then the
following conditions are equivalent:

(i) I is a primal ideal of A;

(ii) when I1, . . . , In are ideals of A such that Ij * Pj for j = 1 . . . n then
∏n
j=1 Ij is non-zero;

(iii) if U1, . . . , Un are open neighbourhoods of P1, . . . , Pn respectively in PrimA then
⋂n
j=1 Uj is

non-empty.

Proof. The equivalence of (2) and (3) follows from the identification of IdA with the open subsets of
PrimA as above. Suppose that (1) holds, and let U1, . . . , Un be open neighbourhoods of P1, . . . , Pn
in PrimA. Since each Pj is in hull I, (3) of Theorem 2.7 holds. Hence

⋂n
j=1 Uj is non-empty and

(3) holds.
Conversely, suppose that (3) holds. Let U1, . . . , Um be open subsets of PrimA which intersect

hull I. Observe that
hull I = hull ker {P1, . . . , Pn}

and that hull I is the closure of {P1, . . . , Pn} in the Jacobson topology. Thus every Uj contains an
element of {P1, . . . , Pn}. Define V1, . . . , Vn by

Vk = ker {Uj : Pk ∈ Uj , 1 ≤ j ≤ n} .

Then each Vk is an open neighbourhood of Pk and hence
⋂n
k=1 Vk is non-empty. But then

⋂n
j=1 Uj

is non-empty so (2) of Theorem 2.7 holds and thus (1) holds, as required.

As an immediate consequence of this corollary, we can greatly simplify the proof of [4], Proposition
4.5. A minimal primal ideal is a primal ideal which has no primal proper subsets. An element P
in PrimA is separated if, for Q in the complement of hullP , P and Q can be separated by disjoint
open sets. In [4] the following proposition is proved using nets and facts about two topologies on
PrimalA. The proof given here, which I believe is new, is much more elementary.
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Proposition 2.9. Let A be a C*-algebra and let P be an element of PrimA. Then the following
conditions are equivalent:

(i) P is a minimal primal ideal of A;

(ii) P is a separated point in PrimA.

Proof. Suppose that P is a minimal primal ideal, but that P is not separated. Then there exists a
primitive ideal Q not in hullP such that P and Q cannot be separated by disjoint open sets. So
P ∩Q is primal and a proper subset of P , which leads to a contradiction. Therefore (1) implies (2).

Conversely, suppose that P is separated but is not a minimal primal ideal. Then there exists
a proper ideal I of P which is primal. Then hullP is a proper subset of hull I, and there exists
Q in hull I but not in hullP . By hypothesis, P and Q can be separated by disjoint open sets, so
P ∩Q is not primal. But P ∩Q contains a primal ideal, I, and is therefore primal, which leads to a
contradiction. Therefore (2) implies (1).

Proposition 2.10. Let A be a unital C*-algebra. Then PrimA is compact in the Jacobson topology.

Proof. Let U be an open cover for PrimA and suppose that U has no finite subcover. Let C be the
collection of closed sets {PrimA\U : U ∈ U}. Let C1, . . . , Cn be elements of C and let Uj be the
complement of Cj in PrimA. The intersection of C1, . . . , Cn is non-empty, as otherwise {U1, . . . , Un}
would be an open subcover for PrimA. Let I be the set

∑
C∈C kerC. We now prove by contradiction

that I is proper. Assume that I is A. Then there exist a1, . . . , an in A and C1, . . . , Cn in C such
that aj lies in kerCj and

1 = a1 + . . .+ an

This implies that kerC1 + . . . kerCn is A. Since C1, . . . , Cn have non-empty intersection they have
a common primitive ideal P . Since each Cj equals hull kerCj we have

P ⊇ kerC1 + . . . kerCn = A,

which is impossible as primitive ideals are proper. Therefore I is a proper ideal of A and hence is
contained in a primitive ideal Q. Then Q contains kerC for all C in C and is therefore an element
of each C. Therefore the intersection of C is non-empty. But this contradicts the definition of U as
an open cover for PrimA, so by contradiction PrimA is compact.

It is easy to check that
{

ker−1 U : U ∈ τJ
}

is a topology on SpecA. This topology is called the
Jacobson or hull-kernel topology for SpecA. By construction the mapping ker : SpecA→ PrimA
is continuous with respect to the Jacobson topologies and, since it is surjective, it is also open.

Let θ : ∂eSA → SpecA be the natural map defined by

θ (x) = [(πx, Hx)]

for x in ∂eSA. Then θ is surjective by Theorem 2.4 and every element of SpecA can be written θ (x)
for some x in ∂eSA. We quote the following Lemma, which is the equivalence of (i) and (iv) in [10],
3.4.10.

Lemma 2.11. Let ∂eSA have the weak*-topology and let SpecA have the Jacobson topology. Let V
be a subset of SpecA and let U be the set θ−1 (V ). Then for x in ∂eSA and θ (x) in SpecA, θ (x)
lies in V if and only if x lies in U .

With the notation of Lemma 2.11, suppose that V is closed and let x be an element of U . Then
by Lemma 2.11 we have that θ (x) is an element of V and hence that x is an element of U . Thus
U is closed. Conversely, suppose that U is closed and let θ (x) be an element of V . By Lemma 2.11
again, x lies in U . Then θ (x) lies in V which implies that V is closed. Thus we have shown that a
subset V of SpecA is closed if and only if θ−1 (V ) is closed. Therefore θ is continuous.

Now let U be open in ∂eSA and let V be the set θ (U). Suppose that θ (x) lies in SpecA\V for
some x in U . Then Lemma 2.11 implies that x lies in θ−1 (SpecA\V ). Since θ−1 (SpecA\V ) is a
subset of ∂eSA\U , this implies that x lies in ∂eSA\U , which is a contradiction. Thus SpecA\V is
closed and V is open so θ is an open map.

The following Theorem is the Second Dauns-Hofmann Theorem, see [9]:
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Theorem 2.12. Let A be a unital C*-algebra and let Cb (PrimA) be the ring of continuous bounded
functions on PrimA. Then for each a in A and each f in Cb (PrimA) there exists an element af

of A such that for all P in PrimA
afP = f (P ) aP .

The following corollary to the Second Dauns-Hofmann Theorem was also proved for the unital
case in [9], Chapter III, Section 5, and for the non-unital case in [11]. Our proof follows [11], but
with appropriate simplifications for the unital case.

Theorem 2.13. Let A be a unital C*-algebra. Then there is a *-isomorphism γ : Z (A) →
Cb (PrimA) such that, for all P in PrimA,

hz (P ) 1Hx = πx (z) ,

where
hz = γ (z)

for each z in Z (A), and where x in ∂eSA is such that P is the kernel of πx.

Proof. Let z be an element of Z (A). Define fz : ∂eSA → C by

fz (x) = x (z)

for x in ∂eSA. Since (πx, Hx) is irreducible, πx (z) agrees with λ1Hx for some complex number λ. In
fact

fz (x) = x (z) = 〈πx (z) ξx, ξx〉 = λ.

Hence,
πx (z) = fz (x) 1Hx .

If x and y are elements of ∂eSA such that (πx, Hx) and (πy, Hy) are unitarily equivalent, then
there exists a unitary U in B (Hx, Hy) such that, for all a in A,

Uπx (a) = πy (a)U.

By [24], Proposition 3.13.4, there exists a u in U (A) such that

Uξx = πy (u) ξy.

Therefore

x (a) = 〈πx (a) ξx, ξx〉
= 〈Uπx (a) ξx, Uξx〉
= 〈πy (a)πy (u) ξy, πy (u) ξy〉
= y (u∗au) .

In particular,
fz (x) = x (z) = y (z) = fz (y) .

Hence the map gz : SpecA→ C given by

gz ([(πx, Hx)]) = fz (x)

is well defined. Clearly fz agrees with gz ◦ θ. Since fz is ẑ, fz is continuous on ∂eSA with the
weak*-topology and since θ is open, gz is continuous.

Let x and y be elements of ∂eSA such that πx and πy have the same kernel. Then πx (z − fz (x))
is zero and hence πy (z − fz (x)) is zero. Therefore

fz (y) 1Hy − fz (x) 1Hy = 0
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and fy (y) equals fz (x). Hence there is a well defined function hz : PrimA→ C given by

hz (kerπx) = fz (x)

for x in ∂eSA. Since gz agrees with hz ◦ ker, the map ker is open and gz is continuous, it follows
that hz is continuous. Furthermore,

|hz (kerπx)| = |x (z)| ≤ ‖z‖

so hz is a continuous bounded function on PrimA. Thus a map
γ : Z (A)→ Cb (PrimA) may be defined by γ (z) = hz for z in Z (A). If P is an element of PrimA,
then for x in ∂eSA such that P is the kernel of πx, it follows that

hz (P ) 1Hx = fz (x) 1Hx = πx (z) .

Since πx is a *-homomorphism it is easy to check that γ is a *-homomorphism.
If γ (z1) equals γ (z2) then ẑ1 agrees with ẑ2 on ∂eSA so x (z1 − z2) is zero for all x in ∂eSA.

Thus z1 equals z2 by [19], paragraph 4.3.8. Hence γ is injective.
Let h be an element of Cb (PrimA). By the Second Dauns-Hofmann Theorem there exists z in

A such that
zP = h (P ) 1P

for all P in PrimA. For a in A and P in PrimA,

(az − za)P = h (P ) ap1p − h (P ) 1pap = 0P

so az − za lies in the kernel of PrimA and is therefore zero. This implies that z lies in Z (A). Since

hz (P ) 1Hx = πx (z)

when P is the kernel of πx for some x in ∂eSA, it follows that hz (P )− z lies in P . Thus

hz (P ) 1P = zP = h (P ) 1P

for all P in PrimA so h = γ (z). Thus γ is surjective, which completes the proof.

Let A be a C*-algebra and let ∆ (A) be the set of characters of A.

Theorem 2.14. Let A be a unital C*-algebra. Then ∆ (A) is a subset of ∂eSA. When A is
commutative ∆ (A) and ∂eSA coincide.

Proof. Let x be an element of ∆ (A). Since x is non-zero there exists a in A such that x (a) is
non-zero. Then x (a) (x (1)− 1) is zero and, as for any *-homomorphism, x lies in A∗1 so x (1) and
‖x‖ are 1. Hence x is a state. Since x is a *-homomorphism, Lx is the kernel of x. For any a in A,
a − x (a) 1 is in the kernel of x so A/Lx is isometrically *-isomorphic to C, as are Hx and B (Hx).
Thus (πx, Hx) is irreducible,

πx (a) = x (a) 1Hx

for all a in A, and, by Theorem 2.4, there exists y in ∂eSA and a unitary
U : Hx → Hy such that, for all a in A,

πy (a)U = Uπx (a)

Now, for all a in A,

y (a) = 〈πy (a)UU∗ξy, ξy〉
= 〈Uπx (a)U∗ξy, ξy〉
= x (a) 〈UU∗ξy, ξy〉
= x (a)
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Thus x is a pure state.
Now suppose that A is commutative and let x be a pure state. Since A is commutative, πx (A)

is a subset of πx (A)
′

and hence of the set of scalar operators. Thus, for all a in A,

πx (a) = x (a) 1Hx

and since πx is a non-zero *-homomorphism it follows that x is. Thus x lies in ∆ (A).

In particular we note that ∆ (Z (A)) is ∂eSZ(A) for any unital C*-algebra A. For x in ∆ (Z (A))
we denote the proper ideal kerx by Ix and define Kx to be the norm closure of IxA. From the proof
above we have that Ix is also kerπx and that Z (A) is the direct sum of Ix and the scalars, from
which it follows that Ix is a maximal ideal of Z (A). Note that

PrimZ (A) = {Ix : x ∈ ∆ (Z (A))} .

Let P be a primitive ideal of A. Then there exists y in ∂eSA such that P is the kernel of πy. Let
x be the restriction of y to Z (A). Then, arguing as in the proof of Theorem 2.14 above,

πy (z) = x (z) 1Hy

for all z in Z (A). Hence x is a character of Z (A) and P ∩Z (A) coincides with Ix. We may therefore
define a map θ : PrimA→ PrimZ (A) by

θ (P ) = P ∩ Z (A)

for P in PrimA. Let x be an element of ∆ (Z (A)). Then

F =
⋂

z∈Z(A)

ẑ−1 ({x (z)})

is a non-empty closed face of SA. By the Krein-Milman Theorem, F has an extreme point x̂ in ∂eSA
which extends x. Furthermore, θ (kerπy) equals Ix, so θ is surjective. Let C be a closed subset of
PrimZ (A). Then C is the hull of an ideal I of Z (A), with respect to Z (A). Now

θ−1 (C) = {P ∈ PrimA : P ∩ Z (A) ⊇ I} = hull I.

Hence θ−1 (C) is closed in PrimA and θ is continuous.
Let P be a primitive ideal of A. By surjectivity of θ, there exists a character x of Z (A) such

that P ∩ Z (A) coincides with Ix. Clearly Kx lies in P . Conversely, if Kx lies in P for some x in
∆ (Z (A)), then P ∩ Z (A) contains Ix. In fact P ∩ Z (A) equals Ix since Ix is maximal. Therefore,
if P is a primitive ideal and x is a character of Z (A), then

P ∩ Z (A) = Ix ⇔ P ∈ hullKx

Define a relation ≈ on PrimA by

P ≈ Q ⇔ f (P ) = f (Q) ∀ f ∈ Cb (PrimA)

where P and Q are primitive ideals. Clearly ≈ is an equivalence relation. Let [P ] denote the
equivalence class of P in PrimA and let PrimA/ ≈ denote the set of equivalence classes.

Let x and y be elements of ∂eSA and let P and Q be the kernels of πx and πy respectively.
Suppose that P ≈ Q, let z be an element of P ∩ Z (A) and let f be the element of Cb (PrimA)
induced by z under the *-isomorphism of Theorem 2.13. Then,

f (P ) 1Hx = πx (z) = 0,

which implies that f (P ) and f (Q) are zero. Thus,

πy (z) = f (Q) 1Hy = 0,
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which implies that z is an element of Q ∩ Z (A). Therefore P ∩ Z (A) is a subset of Q ∩ Z (A) and,
by symmetry, the sets are equal.

Conversely, suppose that P ∩Z (A) equals Q∩Z (A). Let f be an element of Cb (PrimA), denote
f (Q) by λ and define g to be the element f −λ of Cb (PrimA). Let z be the element of Z (A) which
corresponds to g under the *-isomorphism of Theorem 2.13. Then

πy (z) = g (Q) 1Hy = 0

and z is an element of P ∩ Z (A), and hence of Q ∩ Z (A). This implies that

g (P ) 1Hx = πx (z) = 0.

Therefore f has the same value at P and Q. Thus we have proved that for P and Q in PrimA,

P ≈ Q ⇔ P ∩ Z (A) = Q ∩ Z (A) .

Therefore, for each P in PrimA, there exists x in ∆ (Z (A)) such that

[P ] = {Q ∈ PrimA : Q ∩ Z (A) = Ix}
= hullKx,

and, by surjectivity of θ, given x in ∆ (Z (A)), there exists P in PrimA such that [P ] is hullKx.
Thus,

PrimA

≈
= {hullKx : x ∈ ∆ (Z (A))} .

In particular, [P ] is closed in the Jacobson topology for each P in PrimA.
Define the complete regularisation map of PrimA to be the map

φ : PrimA→ IdA, given by
φ (P ) = ker [P ]

for P in PrimA. The range of φ is denoted by GlimmA and its elements are referred to as Glimm
ideals. This terminology arises because

GlimmA = {ker hullKx : x ∈ ∆ (Z (A))}
= {Kx : x ∈ ∆ (Z (A))} .

Thus GlimmA is the set of ideals studied by Glimm in [15], Section 4.
Let G be a Glimm ideal and let Q be a primitive ideal such that φ maps Q to G. If G is a subset

of a primitive ideal P then
P ∈ hull ker [Q] = [Q] = [Q]

since [Q] is closed. Hence φ (P ) equals G. In particular, if ker [P ] and ker [Q] agree, [P ] equals [Q],
so there is a bijection from PrimA/ ≈ to GlimmA. The Jacobson topology on PrimA induces a
quotient topology on PrimA/ ≈, and hence on GlimmA. This is termed the quotient topology for
GlimmA. By construction, φ is continuous with respect to these topologies.

Let f be a continuous bounded function on PrimA, and define a functional f̃ on PrimA/ ≈ by

f̃ ([P ]) = f (P )

for P in PrimA. It is straightforward to check that f̃ is a well-defined continuous function on
PrimA/ ≈. Let [P1] and [P2] be distinct elements of PrimA/ ≈. Then there exists f in Cb (PrimA)
such that f̃ ([P1]) and f̃ ([P2]) are distinct. Since C is Hausdorff, it contains disjoint open subsets V1

and V2, containing f̃ ([P1]) and f̃ ([P2]) respectively. Then f̃−1 (V1) and f̃−1 (V2) are disjoint open
sets of PrimA/ ≈ containing [P1] and [P2] respectively. Hence GlimmA with the quotient topology is
Hausdorff. Since A is unital, it follows from
Proposition 2.10 that GlimmA is also compact in the quotient topology.
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Let Kx be a Glimm ideal, where x is an element of ∆ (Z (A)). Then

Kx ∩ Z (A) = (ker hullKx) ∩ Z (A)

=
⋂

P∈hullKx

(P ∩ Z (A))

= Ix.

Thus, there is a map ψ : GlimmA→ PrimZ (A) defined by

ψ (G) = G ∩ Z (A)

for G in GlimmA. Equivalently,

ψ (Kx) = Ix, ψ (ker [P ]) = P ∩ Z (A)

for x in ∆ (Z (A)) and P in PrimA. Then ψ ◦ φ agrees with θ, and, since θ is continuous, if U
is open in PrimZ (A), then φ−1

(
ψ−1 (U)

)
is open in PrimA. Hence ψ−1 (U) is open in GlimmA,

and it follows that ψ is continuous. Clearly ψ is surjective. If ψ (ker [P ]) equals ψ (ker [Q]) for
some P and Q in PrimA then P ≈ Q and hence ψ is injective. As shown in [9], Lemma 8.10,
the Jacobson topology on PrimZ (A) agrees with the weak*-topology induced by ∆ (Z (A)), and is
therefore Hausdorff. Thus, ψ is a continuous bijection from a compact space to a Hausdorff space,
and, by [34], Theorem 5.9.1, ψ is a homeomorphism.

The following is a useful technical result which may be found in [12].

Lemma 2.15. Let A be a C*-algebra, let X be a non-empty subset of IdA and let J be the inter-
section of X. Then, for all a in A,

‖aJ‖ = sup {‖aI‖ : I ∈ X} .

Proof. Recall that if (Aλ)λ∈Λ is a family of C*-algebras then the direct sum ⊕λ∈ΛAλ is defined to be
the set of all (aλ)λ∈Λ in Πλ∈ΛAλ such that supλ∈Λ ‖aλ‖ exists. This is a C*-algebra under pointwise
defined operations and norm

‖(aλ)‖ = sup
λ∈Λ
‖aλ‖ for a ∈ A.

Let θ : A/J → ⊕I∈XA/I be the natural map given by

θ (aJ) = (aI)I∈X

for a in A. This is well defined because, if a is an element of J , then it is an element of each I in X,
and because {‖aI‖ : I ∈ X} is bounded above by ‖aJ‖, so that supI∈X ‖aI‖ exists.

It is easy to check that θ is a *-homomorphism. If θ (aJ) equals θ (bJ) then a− b is an element of
each I in X so aJ equals bJ and θ is injective. Thus θ is a *-isomorphism onto its image and hence
an isometry. Therefore

‖aJ‖ = ‖θ (aJ)‖ = sup {‖aI‖ : I ∈ X} .

The following may be found in [25], Theorem 4.9.14,

Theorem 2.16. Let A be a C*-algebra, let a be an element of A and let C be a closed subset of
PrimA. Then there exists Q in C such that

‖aQ‖ = sup {‖aP ‖ : P ∈ C} .

The following is an immediate corollary of Lemma 2.15 and Theorem 2.16.

Corollary 2.17. Let A be a C*-algebra, let P be a primitive ideal of A and let G be a Glimm ideal
of A such that φ (P ) is G. Then there exists Q in [P ] such that

‖aG‖ = sup {‖aR‖ : R ∈ [P ]} = ‖aQ‖ .
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The following theorem may be found in [24], paragraph 4.4.4.

Theorem 2.18. Let A be a unital C*-algebra. Then for a in A and λ a strictly positive real number,
the sets {P ∈ PrimA : ‖aP ‖ ≥ λ} are compact.

Let A be a unital C*-algebra, let a be an element of A and let λ be a strictly positive real number.
If P is a primitive ideal and ‖aP ‖ ≥ λ then φ (P ) is a subset of P and∥∥aφ(P )

∥∥ ≥ ‖aP ‖ ≥ λ.

Conversely, if G is a Glimm ideal such that ‖aG‖ ≥ λ, we can take P in φ−1 ({G}) such that

‖aP ‖ = ‖aG‖ ≥ λ.

Therefore
φ ({P ∈ PrimA : ‖aP ‖ ≥ λ}) = {G ∈ GlimmA : ‖aG‖ ≥ λ} .

Since φ is continuous, it follows that this set is compact.
Recall that a real-valued function f on a topological space is said to be upper semi-continuous

if f−1 ([λ,∞)) is closed for λ in R. For each element a of A, define Φa : GlimmA→ R by

Φa (G) = ‖aG‖

for G in GlimmA. Then

Φ−1
a ([λ,∞)) = {G ∈ GlimmA : ‖aG‖ ≥ λ}

and this set is closed since it is a compact subset of a Hausdorff space. Thus Φa is upper semi-
continuous.
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Chapter 3

The Distance to the Scalars

In this chapter we give an exposition of the main results of [33]. In particular we show that every
element a of a unital C*-algebra A has a closest scalar λ (a) and we calculate λ (a) and the distance
from a to λ (a) for some examples. We also find expressions for d (a, Z (A)) and ‖adA a‖.

The following corollary is an exercise from [31].

Corollary 3.1. Let A be a C*-algebra and let X be a non-empty subset of IdA such that the kernel
of X is zero. Then, for all a in A,

‖adA a‖ = sup
{∥∥adA/I aI

∥∥ : I ∈ X
}
.

Proof. Let J be an element of IdA and let bJ be an element of A/J1. Then for all j in J ,

‖[aJ , bJ ]‖ = ‖[a, b+ j]J‖ ≤ ‖[a, b+ j]‖ ≤ ‖adA a‖ ‖b+ j‖ .

Thus,
‖[aJ , bJ ]‖ ≤ ‖adA a‖ inf

j∈J
‖b+ j‖ ≤ ‖adA a‖ ,

which implies that
∥∥adA/J aJ

∥∥ is bounded above by ‖adA a‖. It follows that

sup
{∥∥adA/I aI

∥∥ : I ∈ X
}
≤ ‖adA a‖ .

Conversely, if b lies in the unit ball of A, then

‖[a, b]I‖ ≤
∥∥adA/I aI

∥∥
for all I in X. Applying Lemma 2.15,

‖[a, b]‖ ≤ sup
{∥∥adA/I aI

∥∥ : I ∈ X
}

.

Therefore,
‖adAa‖ ≤ sup

{∥∥adA/I aI
∥∥ : I ∈ X

}
.

In [33], Stampfli defined the maximal numerical range of a bounded linear operator T on a
Hilbert space H to be

W0 (T ) = {λ ∈ C : ∃ (ξn) ⊆ H, ‖ξn‖ = 1, 〈Tξn, ξn〉 → λ, ‖Tξn‖ → ‖T‖} .

In [14], Fong defined the (algebraic) maximal numerical range of an element a of a unital
C*-algebra A to be

V 0
A (a) =

{
x (a) : x ∈ S0

A (a)
}

,
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where
S0
A (a) =

{
x ∈ SA : x (a∗a) = ‖a‖2

}
is the set of maximal states of a. The (algebraic) numeric range is defined by

VA (a) = {x (a) : x ∈ SA} .

Clearly V 0
A (a) is a subset of VA (a). It was shown in [14] that

W0 (T ) = V 0
B(H) (T ) .

In [33], the maximal numerical range was used to prove the Pythagorean relation for operators;
that if T is an element of B (H) then there exists a unique complex number λ such that for all complex
numbers µ,

‖T − λ‖2 + |λ− µ|2 ≤ ‖T − µ‖2 . (3.1)

The equation ∥∥adB(H) T
∥∥ = 2 ‖T − λ‖ (3.2)

was then proved.
By the Gelfand-Naimark Theorem, 3.1 holds for any element of a C*-algebra. The same cannot be

deduced for 3.2, since the Gelfand-Naimark Theorem only gives that A is isometrically *-isomorphic
to a C*-subalgebra of B (H) for some Hilbert space H. Hence ‖adA a‖ may be less than

∥∥adB(H) a
∥∥.

However, as observed in [33], it does hold if A is primitive.
Stampfli’s proof of the Pythagorean relation depends on the fact that W0 (T ) is convex, a non-

trivial consequence of the Toeplitz-Hausdorff Theorem. We avoid this difficulty by proving the result
for a general C*-algebra, using the definition of Fong. The idea of the proof is the same as that of
Stampfli, but some of the details differ. This approach does not appear to have been used elsewhere.
Unfortunately, this strategy does not appear to help with the second equation, and we need the
equivalence of the definitions from [14] to complete the proof.

Lemma 3.2. Let a be an element of a unital C*-algebra A. Then the spectrum of a, σA (a), is a
subset of VA (a), the numerical range, which in turn is a subset of the disc centred at the origin of
radius ‖a‖.

Proof. Let λ be an element of σA (a). Then λ− a is not invertible. Let J be the left ideal A (λ− a).
Since J does not contain the unit, it is proper. Let b be an element of J . If 1 − b lay in the unit
ball, 1− (1− b) = b would be invertible, which contradicts the fact that J does not contain the unit.
Therefore, 1− b does not lie in the unit ball for all b in J . In particular,

‖µ+ b‖ ≥ |µ|

for all b in J and µ in C. Define f : J ⊕ C1→ C by

f (b+ µ) = µ

for b in J and µ in C. Then
|f (b+ µ)|
‖b+ µ‖

≤ 1

for all b in J and µ in C and f (1) is 1. Hence f has unit norm. By the Hahn-Banach Theorem, f
has an extension to a state x of A which is zero on J . In particular,

x (λ− a) = λ− x (a) = 0

so λ lies in VA (a). Since |x (a)| is bounded above by ‖a‖,

σA (a) ⊆ VA (a) ⊆ B‖a‖ (0) .
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Since a∗a is self adjoint, rA (a∗a) equals ‖a‖2, and because a∗a it is positive σA (a∗a) lies in R+.

Since σA (a∗a) is closed, ‖a‖2 lies in σA (a∗a). Hence, a corollary of Lemma 3.2 is that there exists

x in SA such that x (a∗a) equals ‖a‖2. Thus S0
A (a) and V 0

A (a) are non-empty and

‖a‖ = sup
{
x

1
2 (a∗ a) : x ∈ SA

}
.

Since S0
A (a) is the inverse image of the singleton ‖a‖2 under the map â∗a restricted to SA, S0

A (a)
is weak*-closed and therefore weak*-compact. Since V 0

A (a) is the image of S0
A (a) under â, it is also

compact. It is immediate that S0
A (a), and hence V 0

A (a), are convex. In fact S0
A (a) is easily seen to

be a face of SA, although we shall not use this here. We may now prove a lemma equivalent to [33],
Theorem 2.

Lemma 3.3. Let a be an element of a unital C*-algebra A. If V 0
A (a) contains the origin then

‖a‖2 + |µ|2 ≤ ‖a+ µ‖2

for all complex numbers µ. Conversely, if

‖a‖ ≤ ‖a+ µ‖

for all complex numbers µ, then V 0
A (a) contains the origin.

Proof. If V 0
A (a) contains the origin then there exists x in S0

A (a) such that x (a) is zero. Recall that
x is self-adjoint, and hence that x (a∗) is zero. Then for all µ in C

‖a+ µ‖2 ≥ x
(
(a+ µ)

∗
(a+ µ)

)
= x (a∗a) + µx (a) + µx (a∗) + |µ|2

= ‖a‖2 + |µ|2 .

This proves the first statement.
Suppose that a is such that ‖a‖ ≤ ‖a+ µ‖ for all complex numbers µ. Assume that V 0

A (a) does
not contain the origin. Let θ be an element of [0, 2π]. By linearity of states, V 0

A

(
eiθa

)
is the image

of V 0
A (a) under an anticlockwise rotation about the origin by θ. Since V 0

A (a) is closed and convex
there exists a θ in [0, 2π] such that, for all λ in V 0

A

(
eiθa

)
, Reλ ≥ τ for some τ > 0. Let b = eiθa.

Define G to be the set
{
x ∈ SA : Rex (b) ≤ τ

2

}
. Since G is the inverse image of

[
−‖b‖ , τ2

]
under

Re ◦b̂ restricted to SA, G is a weak*-closed subset of SA and is hence weak*-compact. If G is
non-empty, the set {

x
1
2 (b∗b) : x ∈ G

}
is bounded above by ‖b‖ and hence has supremum η. Since G is weak*-compact, η is achieved on

G. Assume that η = ‖b‖. Then there exists x in G such that ‖b‖2 = x (b∗b). But then,

Rex (b) ≤ τ

2
< τ ,

which contradicts the fact that x (b) lies in VA (b). Therefore 0 ≤ η < ‖b‖. If G is empty, let η be
zero.

Define a strictly positive number ν by

ν = min

{
τ

2
,
‖b‖ − η

2

}
.

If x is a state in the complement of G, then Rex (b) > τ
2 which implies −2ν Rex (b) < −ντ .

Thus

x
(
(b− ν)

∗
(b− ν)

)
= x (b∗b)− 2ν Rex (b) + ν2

< x (b∗b)− ντ + ν2

= x (b∗b) + ν (ν − τ) .
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Since 0 < ν ≤ τ
2 , it follows that

ν (ν − τ) ≤ −τν
2
.

Therefore,

x
(
(b− ν)

∗
(b− ν)

)
< x (b∗b)− τν

2
≤ ‖b‖2 − ε1

where ε1 is the strictly positive number τν/2. If G is non-empty, let x be an element of G. Then

−2ν Rex (b) ≤ 2ν |x (b)| ≤ 2νx
1
2 (b∗b) ≤ 2ην.

Therefore,

x
(
(b− ν)

∗
(b− ν)

)
< η2 + 2ην + ν2 = (η + ν)

2 ≤
(
‖b‖+ η

2

)2

= ‖b‖2 − ε2

where ε2 is the strictly positive number 1
4 (‖b‖ − η) (3 ‖b‖+ η). If G is empty put ε2 = ε1. Then we

have shown that, for all x in SA,

x
(
(b− ν)

∗
(b− ν)

)
≤ ‖b‖2 −min {ε1, ε2} ,

from which it follows that ‖b− ν‖ < ‖b‖. But then
∥∥a− eiθν∥∥ < ‖a‖ which contradicts the hypoth-

esis. Therefore V 0
A (a) contains the origin.

Let a and b be elements of A such that a− b is scalar. Then

‖a− b‖2 = x
(
(a− b)∗ (a− b)

)
for all x in SA. Therefore,

‖a+ b‖2 + ‖a− b‖2 = sup
x∈SA

{
x
(
(a+ b)

∗
(a+ b) + x

(
(a− b)∗ (a− b)

))}
= sup
x∈SA

{2x (a∗a) + 2x (b∗b)}

≤ 2 sup
x∈SA

{x (a∗a)}+ 2 sup
x∈SA

{x (b∗b)}

= 2
(
‖a‖2 + ‖b‖2

)
.

Now let (λn) be a sequence in C such that ‖a− λn‖ converges to d (a,C1). Let Nε be such that

‖a− λn‖ < d (a,C1) + ε

for all n ≥ Nε. Then for n,m ≥ Nε, by the inequality above,

‖2a− λn − λm‖2 + |λn − λm|2 ≤ 2 ‖a− λn‖2 + 2 ‖a− λm‖2 .

Therefore,
|λn − λm|2 ≤ 4 (d (a,C1) + ε)

2 − 4d (a,C1)
2

= 4ε (2d (a,C1) + ε) .

Thus (λn) is Cauchy and converges to some complex number λ (a). By norm-continuity

‖a− λ (a)‖ = lim
n→∞

‖a− λn‖ = d (a,C1) .

Theorem 3.4. Let A be a unital C*-algebra and let a be an element of A. Then there exists a
unique complex number λ (a) such that, for all complex numbers µ,

‖a− λ (a)‖2 + |λ (a)− µ|2 ≤ ‖a− µ‖2 .
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Proof. Let λ (a) be a complex number such that

‖a− λ (a)‖ = d (a,C1) .

Then, for all µ in C,
‖a− λ (a)‖ ≤ ‖(a− λ (a)) + µ‖ .

Then, by Lemma 3.3, the origin lies in V 0
A (a− λ (a)). Hence, for all µ in C,

‖a− λ (a)‖2 + |µ|2 ≤ ‖(a− λ (a)) + µ‖2 .

Thus, for all µ in C,
‖a− λ (a)‖2 + |λ (a)− µ|2 ≤ ‖a− µ‖2 .

Suppose that λ′ is another complex number satisfying the inequality. Then

‖a− λ (a)‖2 + 2 |λ (a)− λ′|2 ≤ ‖a− λ′‖2 + |λ (a)− λ′|2 ≤ ‖a− λ (a)‖2 .

Therefore |λ (a)− λ′| is zero, which implies that λ (a) is unique.

If X is a compact subset of C then there exists a unique circle of minimum radius containing X.
This circle is called the circumcircle of X, its centre is the circumcentre of X and its radius the
circumradius of X. If S is the circumcircle of X, then the following two fundamental properties
of circumcircles are satisfied:

(i) every closed semi-circle of S intersects X;

(ii) there exist x, y and z in X ∩ S (not necessarily distinct) such that S is the circumcircle of
{x, y, z}.

Lemma 3.5. Let X be a compact subset of C, and let r be the circumradius of the circumcircle S
of X. Then there exist x and y in X ∩ S such that

|x− y| ≥
√

3r.

Proof. Let µ be the circumcentre of X. We first show that there exist x and y in X ∩ S such that
∠xµy, the angle between x and y through µ, lies between 2π

3 and 4π
3 radians. Let u be an element

of S ∩ X. If there exists v in S ∩ X such that ∠uµv lies between 2π
3 and 4π

3 radians then there
is nothing more to do. Otherwise, by property (ii), there exist w and z in X ∩ S in the regions
indicated in Figure 3.1. Clearly ∠wµz lies between 2π

3 and 4π
3 radians so the statement is proven.

Figure 3.1: The positions of w and z.
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Let θ be the angle between two such elements, x and y. Then cos θ ≤ 1
2 so, by the cosine rule,

|x− y|2 = 2r − 2r2 cos θ

= 2r (1− cos θ)

≥ 3r2.

This completes the proof.

For a in A, the spectrum of a is a compact subset of C, and hence has a unique circumcircle,
centre Ca and radius Ra. Clearly rA (a) ≥ Ra. Let a be normal. Then a− µ is normal and

rA (a− µ) = ‖a− µ‖ , σA (a− µ) = σA (a)− µ.

Thus,
Ra = Ra−µ, Ca−µ = Ca − µ,

for µ in C. Therefore Ca−Ca is zero, which implies

‖a− Ca‖ = rA (a− Ca) = Ra = Ra−µ ≤ rA (a− µ) = ‖a− µ‖ .

Hence,
Ra = ‖a− Ca‖ = d (a,C1) = ‖a− λ (a)‖ .

But then, by Theorem 3.4,

‖a− λ (a)‖2 + |λ (a)− Ca|2 ≤ ‖a− Ca‖2 = ‖a− λ (a)‖2 ,

and λ (a) equals Ca. Thus we have proved that, for a normal, λ (a) is the circumcentre of σA (a) ,
whilst d (a,C1) is the circumradius of σA (a). Furthermore, if a is self-adjoint, then its spectrum is
real, non-empty and bounded and, hence,

α = supσA (a) , β = inf σA (a) ,

exist. Then

λ (a) = Ca =
1

2
(α+ β)

‖a− λ (a)‖ = d (a,C1) = Ra =
1

2
(α− β) .

We now use these facts to calculate λ (a) and d (a,C1) in some particular cases. These results will
be used in later proofs.

For an element a in A let ı : σA (a) → C be the inclusion map. Let a be an element of Asa so
that σA (a) is a subset of R and define

ı+ = max {0, ı} , ı− = max {0,−ı}

These real-valued functions are continuous and

ı = ı+ − ı−, ı+ı− = 0

so by the functional calculus there exist elements a+ and a− in Asa such that

a = a+ − a−, a+a− = 0.

By the spectral mapping theorem

σA (a+) = ı+ (σA (a)) , σA (a−) = ı− (σA (a)) .
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Thus σA (a+) and σA (a−) are subsets of R+ so a+ and a− are positive. This is the well known
orthogonal decomposition of a in Asa [27], Definition 1.4.3. Now |ı| = ı+ + ı− so we define |a| =
a+ + a−. Since

|ı|2 = (ı+ + ı−)
2

= ı2+ + ı2−

= (ı+ − ı−)
2

= ı2

it follows from uniqueness of positive square roots that

|a| = (a∗a)
1
2 =

(
a2
) 1

2 .

We may write

ı+ =
1

2
(|ı|+ ı) , ı− =

1

2
(|ı| − ı)

from which it follows that

a+ =
1

2
(|a|+ a) , a− =

1

2
(|a| − a) .

If a = b− c for some b and c in A+ such that bc is zero then

a∗a = (b+ c)
2

so taking unique positive square roots |a| = b + c. Thus a+ = b and a− = c so the orthogonal
decomposition is unique.

Suppose that a in Asa is such that a+ and a− both have unit norm. Since a+ and a− are positive,
it follows that

α (a+) = α (a−) = 1,

and hence that
α (a) = 1, β (a) = −1.

Thus,
λ (a) = 0, d (a,C1) = 1.

Now let a be a normal element of A, let α = e
2πi
3 and define functions ı0, ı1 and ı2 on C by

ı0 =
1

3
(|ı|+ ı+ ı∗)

ı1 =
1

3
(|ı| − ı+ α (ı∗ − ı))

ı2 =
1

3
(|ı| − ı+ ᾱ (ı∗ − ı)) .

If λ = x+ iy is a complex number, with x and y the real and imaginary parts, we have

ı0 (λ) =
1

3
(|λ|+ 2x)

ı1 (λ) =
1

3

(
|λ| − x+

√
3y
)

ı2 (λ) =
1

3

(
|λ| − x−

√
3y
)

so ı0, ı1 and ı2 are real-valued. Direct calculation shows that

ı = ı0 + αı1 + α2ı2.
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By restricting to σA (a) and applying the functional calculus, there exist elements a0, a1 and a2 in
Asa such that

a = a0 + αa1 + α2a2.

Let us suppose that a is such that a0, a1 and a2 are positive and have zero pairwise products.
Then arguing as in the orthogonal decomposition shows that this decomposition of a is unique. An
elementary calculation shows that

ı0 (λ) = 0 if and only if x ≤ 0 and y = ±
√

3x

ı1 (λ) = 0 if and only if x ≤ 0 and y =
√

3x or x ≥ 0 and y = 0

ı2 (λ) = 0 if and only if x ≤ 0 and y = −
√

3x or x ≥ 0 and y = 0

By continuity of ı0, the kernel of ı0 divides the complex plane into two regions, with ı0 strictly
positive on one and strictly negative on the other. Similarly for ı1 and ı2. Thus σA (a) must be a
subset of the intersection of the non-negative regions for ı0, ı1 and ı2. Hence σA (a) is a subset of
the union of the lines L0, L1 and L2 in the complex plane, where L0 is the non-negative real axis,
L1 is the half line from the origin through α and L2 is the half line from the origin through ᾱ as
shown in Figure 3.2. Furthermore ιj restricted to σA (a) is zero except on σA (a) ∩ Lj .

Figure 3.2: The sets L0, L1 and L2.

Let λ be a non-negative real number. Then

ι0 (λ1) = λ, ι1 (λα) = λ, ι2 (λᾱ) = λ

so each ιj rotates σA (a) ∩ Lj about the origin to the non-negative real line and maps the rest of
σA (a) to the origin. Since ‖aj‖ is positive it follows that ‖aj‖αj lies in σA (a) and σA (a) ∩ Lj is a
subset of

[
0, ‖aj‖αj

]
. Thus, the circumcircle of σA (a) is the circumcircle of {‖a0‖ 1, ‖a1‖α, ‖a2‖ ᾱ}.

In particular, if the aj are of unit norm, λ (a) is zero and d (a,C1) is 1. If a0 is zero but a1 and a2 lie
in the unit ball, then the circle with centre − 1

2 and radius
√

3/2 contains 0, α and ᾱ, and d (a,C1)

is bounded above by
√

3/2.
Let A be a unital C*-algebra, let I be an ideal of A and let a be a self adjoint element of A. By

the spectral mapping theorem, ‖a‖+ aI and ‖a‖ − aI are positive elements of A, and therefore

α (‖a‖+ aI) = ‖‖a‖+ aI‖ , α (‖a‖ − aI) = ‖‖a‖ − aI‖ .

Clearly
α (‖a‖+ aI) = ‖a‖+ α (aI) , α (‖a‖ − aI) = ‖a‖ − β (aI) ,

and therefore,
α (aI) = ‖‖a‖+ aI‖ − ‖a‖ , β (aI) = ‖a‖ − ‖‖a‖ − aI‖ .

Let G be a Glimm ideal of A. Then, by Corollary 2.17, there exist primitive ideals P and Q of A
such that φ (P ) and φ (Q) are G and

‖‖a‖+ aP ‖ = ‖‖a‖+ aG‖ , ‖‖a‖+ aQ‖ = ‖‖a‖+ aG‖ .

24



Thus,

α (aG) = ‖‖a‖+ aG‖ − ‖a‖
= ‖‖a‖+ aP ‖ − ‖a‖
= α (aP ) .

Similarly, β (aG) = β (aQ). Let R be the intersection of P and Q. Then

α (aR) = ‖‖a‖+ aR‖ − ‖a‖
= max {‖‖a‖+ aP ‖ , ‖‖a‖+ aQ‖} − ‖a‖
= ‖‖a‖+ aG‖ − ‖a‖
= α (aG) .

Similarly β (aR) = β (aG).
The following theorem is known as the Kadison Transitivity Theorem. Its proof may be found

in [16], Theorem 1.

Theorem 3.6. Let A be a primitive C*-algebra with faithful irreducible representation (π,H). Let
V be an element of U (B (H)) and let {ξ1, . . . , ξn} be a subset of H. Then there exists u in U (A)
such that

π (u) ξk = V ξk k = 1 . . . n

and
σA (u) 6= {λ ∈ C : |λ| = 1} .

The following is proved in [33], Lemma 3 and Theorem 5.

Lemma 3.7. Let A be a primitive C*-algebra, let a be an element of A and let λ be an element of
V 0
A (a). Then

‖adA a‖ ≥ 2
(
‖a‖2 − |λ|2

) 1
2

.

Proof. Since it is primitive, A has a faithful irreducible representation (π,H). Identifying A with
its image and applying the Hahn-Banach theorem gives

V 0
A (a) = V 0

B(H) (a) = W0 (a) .

Thus there exists a sequence (ξn) in H such that each ξn has unit norm, (‖aξn‖) converges to ‖a‖
and (〈aξn, ξn〉) converges to λ. Write

aξn = αnξn + βnηn,

where

αn = 〈aξn, ξn〉 , βn = ‖(a− αn) ξn‖ , ηn =
1

βn
(a− αn) ξn.

Then ηn has unit norm, 〈ξn, ηn〉 is zero and ξn, ηn are linearly independent. Since

H = 〈ξn〉 ⊕ 〈ηn〉 ⊕ {ξn, ηn}⊥ ,

we may define Vn : H → H by

Vn (αξn + βηn + ζ) = αξn − βηn + ζ,

where ζ lies in {ξn, ηn}⊥. Clearly Vn is linear and

‖Vn (αξn + βηn + ζ)‖2 = ‖αξn − βηn + ζ‖2

= |α|2 + |β|2 + ‖ζ‖2

= ‖αξn + βηn + ζ‖2 .
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Therefore Vn is a surjective isometry and hence unitary. Applying Theorem 3.6, there exists un in
U (A) such that

unξn = ξn, unηn = −ηn.
Thus,

unaξn = 2αnξn − aξn,

and
‖adA a‖ ≥ ‖(aun − una) ξn‖ = 2 ‖(a− αn) ξn‖ .

Furthermore,

‖(a− αn) ξn‖2 = ‖aξn‖2 − αn 〈αnξn, ξn〉 − αn 〈ξn, αnξn〉+ |αn|2

= ‖aξn‖2 − |αn|2

so

‖adA a‖ ≥ 2
(
‖aξn‖2 − |αn|2

) 1
2

.

Letting n tend to infinity, (‖aξn‖) converges to ‖a‖ and (αn) converges to λ. Hence

‖adA a‖ ≥ 2
(
‖a‖2 − |λ|2

) 1
2

.

Theorem 3.8. Let A be a primitive unital C*-algebra. Then, for all a in A,

‖adA a‖ = 2 ‖a− λ (a)‖ .

Proof. For all µ in C
‖a− λ (a)‖ ≤ ‖(a− λ (a)) + µ‖

and, by Lemma 3.3, V 0
A (a− λ (a)) contains the origin. Therefore, by

Lemma 3.7,
‖adA a‖ = ‖adA (a− λ (a))‖ ≥ 2 ‖a− λ (a)‖ .

Conversely,
‖adA a‖ = ‖adA (a− λ (a))‖ ≤ 2 ‖a− λ (a)‖ .

The following is an immediate corollary of Theorem 3.8 and Corollary 3.1.

Corollary 3.9. Let A be a unital C*-algebra. Then, for all a in A,

‖adA a‖ = 2 sup {‖aP − λ (aP )‖ : P ∈ PrimA} .

Proof. By Theorem 3.8 and Corollary 3.1,

‖adA a‖ = sup
{∥∥adA/P aP

∥∥ : P ∈ PrimA
}

= 2 sup {‖aP − λ (aP )‖ : P ∈ PrimA} .

For the next proof we use the following theorem, which can be found in [26], Theorem 2.13.

Theorem 3.10. Let U1, . . . , Un be open subsets of a locally compact Hausdorff space X and let M
be a compact subset of U1 ∪ . . . ∪ Un. Then there exists a partition of unity on M subordinate to
U1, . . . , Un, that is to say continuous functions f1, . . . , fn on X with compact support such that, for
x in X,

0 ≤ fj (x) ≤ 1, supp fj ⊆ Vj , j = 1, . . . , n

and
f1 (x) + . . .+ fn (x) = 1

for all x in M .
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We may now prove [31], Theorem 2.3.

Theorem 3.11. Let A be a unital C*-algebra. Then, for a in A,

d (a, Z (A)) = sup {‖aG − λ (aG)‖ : G ∈ GlimmA} .

Proof. For G in GlimmA let pG : A→ A/G be the canonical map . Clearly pG (Z (A)) contains the
scalars. Conversely, let zG be an element of pG (Z (A)) , where z lies in Z (A), and recall that

Z (A) = (G ∩ Z (A))⊕ C1G.

Then zG is a scalar and pG (Z (A)) is C1G. It then follows from Theorem 3.4 that, for all z in Z (A),

‖a− z‖ ≥ ‖(a− z)G‖ ≥ ‖aG − λ (aG)‖ .

Thus
α = sup {‖aG − λ (aG)‖ : G ∈ GlimmA}

exists and α is bounded above by d (a, Z (A)).
Recall from Chapter 2 that Φa : GlimmA → R+, the map taking G to ‖aG‖, is upper semi-

continuous, and, given ε > 0, the set

M = Φ−1
a ([α+ ε,∞))

is compact. If M is empty, then, by Lemma 2.15,

d (a, Z (A)) ≤ ‖a‖ = sup {‖aG‖ : G ∈ GlimmA} ≤ α+ ε.

Otherwise, for H in M define
UH = Φ−1

a−λ(aH) ((−∞, α+ ε)) .

Since Φa−λ(aH) is upper semi-continuous and

Φa−λ(aH) (H) = ‖aH − λ (aH)‖ ≤ α,

UH is an open neighbourhood of H. Thus {UH : H ∈M} is an open cover for M and, by compact-
ness, there exist H1, . . . ,Hn in M such that UH1 , . . . , UHn form an open sub-cover. Let f1, . . . , fn

be a partition of unity for M , defined on GlimmA and subordinate to UH1 , . . . UHn . Let z1, . . . , zn

be elements of Z (A) such that, for all G in GlimmA,

zjG = f j (G) 1G j = 1 . . . n.

Let z be the element
∑n
j=1 λ

jzj of Z (A) where λj denotes λ (aHj ). Then, for each G in GlimmA,

‖aG − zG‖ =
∥∥∥aG −∑n

j=1λ
jzjG

∥∥∥
≤
∥∥∥aG −∑n

j=1z
j
GaG

∥∥∥+
∥∥∥∑n

j=1z
j
GaG −

∑n
j=1λ

jzjG

∥∥∥
≤
(

1−
∑n
j=1f

j (G)
)

Φa (G) +
∑n
j=1f

j (G) Φa−λj (G)

<
(

1−
∑n
j=1f

j (G)
)

Φa (G) +
(∑n

j=1f
j (G)

)
(α+ ε)

since f j is zero unless G lies in UHj . If G lies in M then
∑n
j=1f

j (G) sums to 1. If G is not an
element of M then Φa (G) is less than α+ ε. Therefore, in either case,

d (a, Z (A)) ≤ ‖aG − zG‖ < α+ ε.

Since ε was arbitrary, the result follows.
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Chapter 4

Pure Functionals

We begin this chapter with a statement of the polar decomposition theorem for linear functionals,
[10], Theorem 12.2.4 and Definition 12.2.8.

Theorem 4.1. Let A be a unital C*-algebra, with dual A∗ and second dual A∗∗. Then, for each x
in A∗, there exists a unique pair (u, |x|) with u an element of A and a partial isometry in A∗∗, and
|x| an element of A∗+ such that

‖|x|‖ = ‖x‖ , x (a) = |x| (ua) , |x| (a) = x (u∗a) ,

for all a in A, and with uu∗ equal to the support of |x|.

The functional |x| is known as the absolute value of x.
For a unital C*-algebra A we define GA, the set of pure functionals of A, to be ∂eA

∗
1, the

extreme points of the unit ball of the dual of A. We now quote a characterisation of GA from [6],
Proposition 1.1.

Theorem 4.2. Let A be a C*-algebra and let x be a linear functional. Then x is a pure functional
if and only if there exists a non-zero irreducible representation (π,H) such that, for all a in A,

x (a) = 〈π (a) ξ, η〉 ,

where ξ and η are unit vectors in H. Furthermore, when this is the case,

|x| (a) = 〈π (a) ξ, ξ〉

for all a in A, and |x| is a pure state.

Let a be an element of a C*-algebra A. Then there exists an element x in SA such that

‖a‖2 = x (a∗a)

= 〈πx (a) ξx, πx (a) ξx〉

= ‖πx (a) ξx‖2 .

Define a function f on A by
f (b) = 〈π (b) ξ, η〉

for b in A, where

η =
1

‖a‖
πx (a) ξx.

Then η is a unit vector and f is a pure functional on A. Thus, for every a in A, there exists an
element f in GA such that f (a) equals ‖a‖.
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Let I be an ideal in A, let f be a pure functional on A/I, and let (π,H) be an irreducible
representation of A/I such that, for all aI in A/I,

f (aI) = 〈π (aI) ξ, η〉

for some unit vectors ξ and η in H. Then π ◦ pI is a *-homomorphism from A to H and π ◦ pI (A)
equals π (A), from which it follows that π ◦ pI (A)

′
equals π (A)

′
. Thus (π ◦ pI , H) is an irreducible

representation of A and, for all a in A,

f ◦ pI (a) = 〈π ◦ pI (a) ξ, η〉 .

Therefore, f in GA/I induces f ◦ pI in GA. Similarly, let f be a pure functional on A and let (π,H)
be an irreducible representation of A such that, for all a in A,

f (a) = 〈π (a) ξ, η〉 ,

for some unit vectors ξ and η in H. Then if I is an ideal of A contained in kerπ, an irreducible
*-homomorphism is induced on A/I by π and f induces a pure functional

f (aI) = 〈π (a) ξ, η〉

on A/I.
Define a map ∆A : GA → ∂eSA by

∆A (x) = |x|

for x in GA. Let GA and ∂eSA have the weak*-topologies induced by A∗. Recall that if a subset X
of A∗ has the weak*-topology and x is a point in X then every neighbourhood U of x contains an
open set of the form

VX (x; a1, . . . , an; ε) = {y ∈ X : |x (aj)− y (aj)| < ε for j = 1 . . . n}

for some n in N, a1, . . . , an in A and ε > 0.
Let U be an open set in GA and let x be an element of ∆ (U). Then there exists y in U such

that x = |y|. Let a1, . . . , an in A and ε > 0 be chosen so that V = VGA (y; a1, . . . , an; ε) is a subset
of U . By Theorem 4.2, there exists a non-zero irreducible representation (π,H) such that, for all a
in A,

y (a) = 〈π (a) ξ, η〉 , x (a) = 〈π (a) ξ, ξ〉

where ξ and η are unit vectors in H. By [24], Proposition 3.13.4, there exists a unitary u of A such
that

π (u) η = ξ.

Then, for all a in A,
x (ua) = y (a) .

Let W = V∂eSA (x;ua1, . . . , uan; ε), let w be an element of W , and define
z : A→ C by

z (a) = w (ua)

for a in A. Clearly z is a linear functional and, for all a in A,

z (a) = 〈πw (ua) ξw, ξw〉
= 〈πw (a) ξw, πw (u∗) ξw〉 .

Since u is unitary, πw (u∗) is isometric, and hence πw (u∗) ξw has unit norm. It follows from Theorem
4.2 that z is a pure functional. Furthermore, since

|w (uaj)− x (uaj)| < ε, j = 1 . . . n,
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it follows that
|z (aj)− y (aj)| < ε, j = 1 . . . n.

Hence z is an element of V . Clearly ∆ (z) equals w, and we have shown that

W ⊆ ∆ (V ) ⊆ ∆ (U) .

Since x in ∆ (U) was arbitrary and W is an open neighbourhood of x, it follows that ∆ (U) is open
and hence ∆ is open.

Let x be a pure functional, and let (π1, H1) and (π2, H2) be irreducible representations such that,
for all a in A,

x (a) = 〈π1 (a) ξ1, η1〉 = 〈π2 (a) ξ2, η2〉 .
Then, for all a, b and c in A,

x (a∗bc) = 〈π1 (b)π1 (c) ξ1, π1 (a) η1〉 = 〈π2 (b)π2 (c) ξ2, π2 (a) η2〉 .

Let b be an element of kerπ1. Then, by continuity,

〈π2 (b)π2 (c) ξ2, η〉 = 0

for all η in H2. Thus π2 (b) is zero on π2 (A) ξ2 and hence on H2. By symmetry, π1 and π2 have the
same kernel, and there is a well defined map
ΓA : GA → PrimA given by

ΓA (x) = kerπ,

where (π,H) is an irreducible representation of A such that

x (a) = 〈π (a) ξ, η〉

for some unit vectors ξ and η in H. As an immediate consequence of
Theorem 4.2, we see that, for all x in GA,

ΓA (|x|) = ΓA (x)

and ΓA = ΓA ◦∆A. Since, for every x in ∂eSA,

x (a) = 〈πx (a) ξx, ξx〉

for all a in A, it is immediate that ΓA restricted to ∂eSA agrees with the natural map ker : ∂eSA →
PrimA, discussed in Chapter 2. As shown there, ker is open. Since ∆A is also open, ΓA is the
composition of open maps and is therefore open.

In the following discussion a net (xω)ω∈Ω is said to be a subnet of a net (xλ)λ∈Λ if there exists a
function ϕ : Ω→ Λ such that xϕ(ω) = xω and for each λ in Λ there is a ω0 in Ω such that ϕ (ω) ≥ λ
whenever ω ≥ ω0 [21], p70. Note that this definition differs from that given by some authors (e.g.
[35]). The following technical result may be found in [13], Chapter II, 13.2.

Lemma 4.3. Let X and Y be topological spaces and let f : X → Y be an open map. Then,
whenever a net (yλ)λ∈Λ converges to a point f (x) in Y for some x in X there exists a subnet
(yω)ω∈Ω of (yλ)λ∈Λ and a net (xω)ω∈Ω of X such that, for all ω in Ω,

f (xω) = yω

and (xω) converges to x.

Proof. Let Nx be the set of neighbourhoods of x directed by set inclusion. Let Ω be the product
of Λ and Nx with the product direction. Let ω be the element (λ,U) in Ω. Since f is open, f (U)
is an open neighbourhood of f (x), and there is therefore a λ0 in Λ such that yµ is in f (U) for all
µ ≥ λ0. Choose λω greater than or equal to λ and λ0 and let ϕ be the map taking ω to λω.

For λ in Λ, let ω0 = (λ,X). Then ϕ (ω) ≥ λ whenever ω ≥ ω0 Hence, defining yω to be yλω for
ω in Ω gives a subnet of (yλ)λ∈Λ. For each ω in Ω, choose xω in U such that f (xω) = yω. If U is
an open neighbourhood of x, let ω0 = (λ,U) for some λ in Λ. Then xω lies in U when ω ≥ ω0 and
(xω) is a net converging to x such that f (xω) = yω for all ω in Ω.
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We now prove an important formula for ‖adA a‖ following the proof given in [30], Proposition
5.7. For an alternative proof see [31], Proposition 2.6.

Proposition 4.4. Let A be a unital C*-algebra. Then, for all a in A,

‖adAa‖ = 2 sup {‖aP − λ (aP )‖ : P ∈ PrimalA} .

Proof. Since every primitive ideal is prime, and therefore primal,

sup {‖aP − λ (aP )‖ : P ∈ PrimalA} ≥ sup {‖aP − λ (aP )‖ : P ∈ PrimA} .

Let I be a proper primal ideal. By Theorem 2.7 there exists a net (Pα)α∈A in PrimA converging to
every point in hull I. By Theorem 3.4

|λ (aPα)| ≤ ‖aPα‖ ≤ ‖a‖ .

Hence (λ (aPα)) lies in a compact subset of the complex plane and by [21], Chapter 5, Theorem 2,
has a subnet

(
λ
(
aPβ
))
β∈B convergent to some complex number µ. Let a be an element of A. As we

have seen, there exists a pure functional f on A/I such that

|f (aI − µ)| = ‖aI − µ‖

and f induces a pure functional f on A such that ΓA (f) lies in hull I and is therefore a limit of (Pβ).
Since ΓA is open and surjective, by Lemma 4.3 there exists a subnet (Pω)ω∈Ω and a net (fω)ω∈Ω

weak* convergent to f such that ΓA (fω) is Pω for all ω in Ω. Then, given ε > 0, there exists a ω in
Ω such that

|λ (aPω )− µ| < ε
2 , |f (a− µ)− fω (a− µ)| < ε

2 .

Recalling that fω induces a pure functional on A/Pω, we have

‖aPω − λ (aPω )‖ ≥ |fω (aPω − λ (aPω ))|
≥ |fw (a− µ)| − |fω (λ (aPω )− µ)|
≥ |f (a− µ)| − |fw (a− µ)− f (a− µ)| − ε

2

≥ |f (a− µ)| − ε
2 −

ε
2

= ‖aI − µ‖ − ε
≥ ‖aI − λ (aI)‖ − ε.

Thus
sup {‖aP − λ (aP )‖ : P ∈ PrimA} ≥ ‖aI − λ (aI)‖

for any primal ideal I of A. Hence

sup {‖aP − λ (aP )‖ : P ∈ PrimA} = sup {‖aP − λ (aP )‖ : P ∈ PrimalA}

and this equals ‖adA‖ by Corollary 3.9.

For a unital C*-algebra A, let

NA = conv {f ∈ GA : f (1) ≥ 0}.

For a in A, let
UA (a) = {f (a) : f ∈ NA} .

Since S0
A (a) is a non-empty weak*-compact face of SA, by the Krein-Milman Theorem, there exists

an element x in ∂eSA such that x (a∗a) = ‖a‖2. Define f : A→ C by

f (b) = 〈π (b) ξx, η〉
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where

η = eiθ
π (a)

‖a‖
ξx

and θ is an element of [0, 2π], chosen so that eiθx (a) ≥ 0. Since

‖π (a) ξx‖2 = 〈π (a∗a) ξx, ξx〉 = x (a∗a) = ‖a‖2

η is a unit vector and f lies in GA. Since

f (b) =
e−iθ

‖a‖
x (a∗b) ,

it follows that f (1) is positive by choice of θ, and that f (a) = eiθ ‖a‖. Thus, for all a in A, there
exists f in NA such that |f (a)| = ‖a‖ and hence there exists an element of norm ‖a‖ in UA (a).
Thus,

‖a‖ = sup {|f (a)| : f ∈ NA} .

In Chapter 3 the circumcircle was defined and used to find an expression for λ (a) when a is
self-adjoint. We now prove some inequalities connecting λ (a) and the circumcentre of UA (a) for a
general element a of A.

Lemma 4.5. Let A be a unital C*-algebra. Let a be an element of A, let µ (a) denote the circum-
centre of UA (a) and let ρ (a) denote the circumradius of UA (a). Then:

(i) |λ (a)|2 ≤ 4 |µ (a)| ‖a‖;

(ii) if |µ (a)| ≤ 1
2 ‖a‖ then |λ (a)|2 ≤ 4 |µ (a)| (‖a‖ − |µ (a)|);

(iii) ‖a‖2 ≥ ρ (a)
2

+ |µ (a)|2;

(iv) |λ (a)− µ (a)|2 ≤ 2 |λ (a)| ‖a‖.

Proof. Fix a in A and let µ = µ (a), λ = λ (a) and ρ = ρ (a). As shown above, there exists α in
UA (a) such that |α| = ‖a‖. Therefore

ρ ≥ |α− µ| ≥ ‖a‖ − |µ| .

The diameter perpendicular to the line
−→
λµ divides the circumcircle into two semicircles. By property

(i) of circumcircles there exists f in NA such that α = f (a) is in the closed semicircle not cut by
−→
λµ. Let θ be the angle between

−→
λµ and −→µα. By construction ρ = |α− µ| and θ lies in

[
π
2 ,

3π
2

]
, so

cos θ ≤ 1. Let t equal f (1). Since t lies in [0, 1], the complex number β, given by tλ+ (1− t)µ, lies

on
−→
λµ.

Figure 4.1: The angle θ.

The cosine rule and cos θ ≤ 1 gives the inequality

|α− β| ≥ |α− µ| = ρ.
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Now,

‖a− λ‖ ≥ |f (a− λ)|
= |α− tλ|
≥ ||α− tλ− (1− t)µ| − |(1− t)µ||
≥ |α− β| − (1− t) |µ|
≥ ρ− |µ|
≥ ‖a‖ − 2 |µ| ,

from which it follows that

2 |µ| ≥ ‖a‖ − ‖a− λ‖ , − ‖a− λ‖2 ≤ − (‖a‖ − 2 |µ|)2
.

By Theorem 3.4
‖a− λ‖2 + |λ|2 ≤ ‖a‖2 , ‖a− λ‖ ≤ ‖a‖ .

Thus,

|λ|2 ≤ ‖a‖2 − ‖a− λ‖2

= (‖a‖ − ‖a− λ‖) (‖a‖+ ‖a− λ‖)
≤ 2 |µ| 2 ‖a‖
= 4 |µ| ‖a‖ .

If |µ (a)| ≤ 1
2 ‖a‖, then

|λ|2 ≤ ‖a‖2 − ‖a− λ‖2 ≤ ‖a‖2 − (‖a‖ − 2 |µ|)2
= 4 |µ| (‖a‖ − |µ|) .

This proves (1) and (2). By the method used above we may choose f in NA such that the angle
between µ and −→µα lies in

[
π
2 ,

3π
2

]
where α = f (a). By the cosine rule

‖a‖2 ≥ |f (a)|2 ≥ ρ2 + |µ|2 .

This proves (3). From (3), or the observation that UA (a) is a subset of B‖a‖ (0), it can be seen
that ‖a‖ ≥ ρ. Let f be an element of NA such that |f (a− µ)| > ρ. Then f (1) lies in [0, 1) since
f (1) = 1 implies

|f (a− µ)| = |f (a)− µ| ≤ ρ.
Let

α = f (a) , β = f (1)µ,

and let φ, θ be the angles indicated in Figure 4.2. Then,

|α− β| = |f (a− µ)| > ρ ≥ |f (a)− µ|

and, by the cosine rule, cosφ ≥ 0. Hence cos θ ≤ 0. Applying the cosine rule again gives that

‖a‖ ≥ |α| ≥ |β − α| = |f (a− µ)| .

Thus, for all f in NA, either
|f (a− µ)| ≤ ρ ≤ ‖a‖ ,

or |f (a− µ)| > ρ, in which case |f (a− µ)| ≤ ‖a‖. Therefore,

‖a‖ ≥ sup {|f (a− µ)| : f ∈ NA} = ‖a− µ‖ .

By Theorem 3.4,

|λ− µ|2 ≤ ‖a− µ‖2 − ‖a− λ‖2

≤ ‖a‖2 − ‖a− λ‖2

= (‖a‖ − ‖a− λ‖) (‖a‖+ ‖a− λ‖)
≤ 2 |λ| ‖a‖

and the proof of (4) is complete.
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Figure 4.2: The angles θ and φ.
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Chapter 5

The Categorisation Theorem

In this chapter we develop the main theorem of this paper, the categorisation theorem given in [31],
Section 3. This is done by proving four theorems connecting the values of Ks (A) and K (A) to the
primality of the intersection of a fixed number of primitive ideals containing the same Glimm ideal.

We begin by quoting two technical results which will be used in the following theorems. They
can be found in [2], Theorem 4.3 and [1], Corollary 2.4 respectively.

Proposition 5.1. Let π be a *-homomorphism on a C*-algebra A. Then, for each element a in A,
there exists b in kerπ such that b is an element of C∗ (a), the smallest C*-subalgebra of A containing
a, and

‖a− b‖ = ‖π (a)‖ .
Since every ideal I of A is the kernel of the quotient homomorphism, an immediate corollary of

Proposition 5.1 is that, for all a in A, there exists b in I such that

‖a− b‖ = ‖aI‖ .

Proposition 5.2. Let A be a C*-algebra and let a and b be elements of Asa such that ab lies in I.
Then there exist a1 and b1 in I such that a− a1, b− b1 lie in Isa and (a− a1) (b− b1) is zero.

Note that since a and b lie in Asa and a− a1 and b− b1 lie in Isa in the statement of Proposition
5.2, a1 and b1 lie in Isa.

The first theorem, a reformulation of [30], Theorem 5.8, gives necessary and sufficient conditions
for Ks (A) to equal 1

2 . It also shows that, for a non-commutative C*-algebra, if Ks (A) is not equal
to 1

2 , K (A) ≥ Ks (A) ≥ 1. The proof given here follows [30], Theorem 5.8, but it is also possible to
deduce the result from [32], Theorem 4.4 (see Chapter 6).

Theorem 5.3. Let A be a non-commutative unital C*-algebra. If, whenever two primitive ideals
of A contain the same Glimm ideal, their intersection is primal, then Ks (A) = 1

2 . Otherwise
Ks (A) ≥ 1.

Proof. Suppose that whenever two primitive ideals of A contain the same Glimm ideal their inter-
section is primal. Let G be a Glimm ideal and let a be a self adjoint element of A. As we have seen,
there exist primitive ideals P and Q of A containing G, such that

α (aG) = α (aR) , β (aG) = β (aR) ,

where R is the intersection of P and Q. Since, by hypothesis, R is primal, by Theorem 4.4,

‖aR − λ (aR)‖ ≤ 1
2 ‖adA a‖ .

Since a is self adjoint,

‖aR − λ (aR)‖ = 1
2 (α (aR)− β (aR))

= 1
2 (α (aG)− β (aG))

= ‖aG − λ (aG)‖ .
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Since G was arbitrary, this implies that

sup {‖aG − λ (aG)‖ : G ∈ GlimmA} ≤ 1
2 ‖adA a‖ .

Then, by Theorem 3.11,
d (a, Z (A)) ≤ 1

2 ‖adA a‖

for all a in Asa. Therefore Ks (A) ≤ 1
2 . Since A is non-commutative,

Ks (A) ≥ 1
2 , and consequently, Ks (A) = 1

2 .
Conversely, suppose there exist primitive ideals P and Q of A such that their intersection contains

the same Glimm ideal, but is not primal. Then, by Corollary 2.8, there exist ideals I and J of A
such that

I * P , J * Q, IJ = {0} .

We may choose a in I but not P . By Proposition 5.1, there exists b in G∩C∗ (a) such that ‖c‖ = ‖cG‖
where c = a − b. Since C∗ (a) is a subset of I, c is an element of I but not of G. Since zero is an
element of G, c is non-zero, and we may rescale c to have unit norm. Then c∗c is a positive element
of I and

‖c∗c‖ = ‖(c∗c)G‖ = 1.

By this argument we may choose b in I+\G and c in J+\Q such that

‖b‖ = ‖bG‖ = ‖c‖ = ‖cG‖ = 1.

Furthermore, since IJ is zero, bc equals zero. Let a = b − c. Then aG is self-adjoint, and by the
uniqueness of the orthogonal decomposition,

bG = a+
G, cG = a−G.

As we have seen, in these circumstances aG − λ (aG) has unit norm, so by Theorem 3.11

d (a, Z (A)) ≥ ‖aG − λ (aG)‖ = 1.

Let R be a primitive ideal. Since IJ is zero, R contains at least one of I and J . Hence R contains at
least one of a+ and a−. Therefore, for each R in PrimA, aR is either a+

R or a−R . Since a+
R is positive∥∥a+

R − λ
(
a+
R

)∥∥ = 1
2

(
α
(
a+
R

)
− β

(
a+
R

))
≤ 1

2

∥∥a+
R

∥∥
≤ 1

2 .

Similarly for a−R. Therefore

2 sup {‖aR − λ (aR)‖ : R ∈ PrimA} ≤ 1.

Then, by Theorem 4.4,

‖adA a‖ ≤ 1 ≤ d (a, Z (A)) ≤ Ks (A) ‖adA a‖ .

Since d (a, Z (A)) is non-zero, ‖adA a‖ is non-zero, and this implies that
Ks (A) ≥ 1.

Theorem 5.4. Let A be a non-commutative unital C*-algebra such that,
whenever three primitive ideals of A contain the same Glimm ideal, their intersection is primal.
Then K (A) = 1

2 .

Proof. Let a be an element of A and let G be an element of GlimmA. Let b = a − λ (aG). Then
λ (bG) is zero by Theorem 3.4. Let B be the C*-algebra A/G, let λ be an element of ∂eUB (bG) and
define

F = {f ∈ NB : f (bG) = λ} .
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By definition of UB (bG), F is non-empty. F is clearly convex, and since λ is extreme in UB (bG), F
is a face of NB . Furthermore

F = NB ∩ b̂G
−1

({λ}) .

Thus F is weak*-closed in the weak*-compact set A∗1 and is hence weak*-compact. Hence the Krein-
Milman theorem applies to F , and there exists f in ∂eNB such that f (bG) = λ. By property (ii)
of circumcircles there exist points f (bG), g (bG), h (bG) with the same circumcircle as UB (bG) for
some f, g, h in ∂eNB . Since {g ∈ GB : g (1) ≥ 0} is a closed subset of NB such that

NB = conv {g ∈ GB : g (1) ≥ 0},

it follows from the Krein-Milman theorem that

∂eNB ⊆ {g ∈ GB : g (1) ≥ 0}.

Hence there exist nets (fα)α∈A, (gβ)β∈B, (hγ)γ∈C in GB convergent to f , g, h respectively. Let
Λ = A× B × C have the product direction and define

f(α,β,γ) = fα, g(α,β,γ) = gβ , h(α,β,γ) = hγ .

Then it is easy to check that (fλ)λ∈Λ, (gλ)λ∈Λ and (hλ)λ∈Λ are nets convergent to f , g, h respectively.
For each λ in Λ, define primitive ideals Pλ, Qλ and Rλ of A by

Pλ = Γ (fλ ◦ pG) , Qλ = Γ (gλ ◦ pG) , Rλ = Γ (hλ ◦ pG) .

Let Sλ be the ideal Pλ ∩Qλ ∩Rλ. Clearly G is a subset of Sλ, and by hypothesis Sλ is primal.
Since Sλ is a subset of ker fλ ◦ pG, a well defined function is induced on A/Sλ by fλ. Let ρλ be

the circumradius of UA/Sλ (bSλ), and let ε > 0. Since f is the weak*-limit of (fλ), there exists λ0 in
Λ such that |fλ (bG)− f (bG)| < ε for λ ≥ λ0. Hence

|µ (bSλ)− f (bG)| ≤ |µ (bSλ)− fλ (bSλ)|+ |fλ (bSλ)− f (bG)| ≤ ρλ + ε

for all λ ≥ λ0. Similar inequalities hold for g and h. Thus, the circle with centre µ (bSλ) and radius
ρλ + ε contains the points f (bG), g (bG), h (bG), and hence ρλ + ε is larger than the radius of their
circumcircle, which by construction is the circumcircle of UB (bG). Since λ (bG) equals zero, it follows
from
Lemma 4.5 (4) that µ (bG) is zero. Combining this with the fact that UB (bG) has an element
of norm ‖bG‖ it can be seen that, for λ sufficiently large,

ρλ ≤ ‖bSλ‖ ≤ ‖bG‖ ≤ ρλ + ε.

Since ε was arbitrary, it follows that ρλ converges to ‖bG‖. Applying this to Lemma 4.5 (3) shows
that

ρ2
λ + |µ (bSλ)|2 ≤ ‖bSλ‖

2 ≤ ‖bG‖2

from which it follows that µ (bSλ) converges to zero. Applying this to
Lemma 4.5 (1) shows that λ (bSλ) converges to zero. Thus, given ε > 0, there exists a λ such
that

|λ (bSλ)| < ε
4 , |fλ (bG)− f (bG)| < ε

4 .

Furthermore,

‖bSλ − λ (bSλ)‖ ≥ |fλ (bSλ − λ (bSλ))|
≥ |fλ (bSλ)| − |λ (bSλ)| |fλ (1)|
≥ |f (bG)| − |fλ (bSλ)− f (bG)| − |λ (bSλ)|
≥ |f (bG)| − ε

4 −
ε
4 .
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Since µ (bG) is zero and UA (bG) has an element of norm ‖bG‖, the circumradius of UB (bG) is ‖bG‖ .
The points f (bG), g (bG), h (bG) lie on the circumference of this circle and therefore have magnitude
‖bG‖. Since λ (bG) is zero, for any Glimm ideal G and any ε > 0, there exists an element S in
PrimalA such that

2 ‖bS − λ (bS)‖ ≥ 2 ‖bG‖ − ε = 2 ‖bG − λ (bG)‖ − ε.

By Proposition 4.4 it follows that, for all G in GlimmA,

‖adAb‖ ≥ 2 ‖bG − λ (bG)‖ − ε

and, by Theorem 3.11,
‖adAb‖ ≥ 2d (b, Z (A))− ε

for all ε > 0. Thus,
‖adAa‖ = ‖adAb‖ ≥ 2d (b, Z (A)) = 2d (a, Z (A)) ,

and K (A) ≤ 1
2 . Since A is non-commutative K (A) ≥ 1

2 and the theorem is proved.

The following theorem is [31], Theorem 3.3.

Theorem 5.5. Let A be a unital C*-algebra with three primitive ideals containing the same Glimm
ideal which have non-primal intersection. Then
K (A) ≥ 1√

3 .

Proof. Let P , Q and R be primitive ideals containing the same Glimm ideal G such that P ∩Q∩R
is non-primal. As shown in Theorem 5.3 above, if A has two primitive ideals which contain the same
Glimm ideal and whose intersection is non-primal then K (A) ≥ KS (A) ≥ 1 and there is nothing
more to prove. Therefore we may assume P ∩Q, Q ∩R and R ∩ P are primal.

Since P ∩Q ∩R is not primal, by Corollary 2.8 there exist ideals I, J and K of A such that

I * P , J * Q, K * R, IJK = {0} .

Since P ∩ Q is primal, applying Corollary 2.8 again gives that IJ is non-zero. Similarly, JK and
KI are non-zero. Since IJK is zero, Q∩R is primal, and K is not a subset of R, it follows that IJ
is a subset of Q ∩ R and hence of Q. Since Q is primitive, but does not contain J , I is a subset of
Q. Similarly,

I ⊆ Q,R, J ⊆ P,R, K ⊆ P,Q.

Thus,
P ⊇ J +K, Q ⊇ I +K, R ⊇ J + I.

Arguing as in Theorem 5.3, we may choose a in I+\P , b in J+\Q and c in K+\R such that

‖a‖ = ‖aP ‖ = ‖b‖ = ‖bP ‖ = ‖c‖ = ‖cP ‖ = 1

Then a, b and c are self adjoint and ab lies in IJ , bc lies in JK and ca lies in KI. Hence, by
Proposition 5.2, there exist a1, b1 in IJsa, b2, c2 in JKsa and c3, a3 in KIsa such that

(a− a1) (b− b1) = (b− b2) (c− c2) = (c− c3) (a− a3) = 0.

Define self-adjoint elements d, f and g of A by

d = a− a1 − a3, f = b− b1 − b2, g = c− c2 − c3.

Since a1 + a3 is an element of J + K, and hence of P , it follows that dP equals aP . Similarly fQ
equals bQ and gR equals cR. Now,

df = (a− a1 − a3) (b− b1 − b2)

= (a− a1) (b− b1)− (a− a1) b2 − a3 (b− b1) + a3b2

= 0,

38



since (a− a1) (b− b1) is zero and the other terms are elements of IJK. Similarly, fg and gd are
zero. By Proposition 5.1, there exists p in P ∩ C∗ (d) such that

‖d− p‖ = ‖dP ‖ = ‖aP ‖ = 1.

Since every element of C∗ (d) is an element of P ∩ I and has zero product with f and g, we may

replace d with (d− p)2
. Doing the same to f and g shows that A has positive elements d, f and g

such that:

(i) d lies in I, f in J and g in K;

(ii) df , fg and gd are zero;

(iii) d, f , g, dP , fQ and gR have unit norm.

Define an element h of A by

h = d+ e
2πi
3 f + e

4πi
3 g.

Then h is normal and the decomposition is the unique decomposition of h discussed in Chapter 3.
As shown there, h has unit norm. Since G is contained in P , Q and R, it follows that

1 = ‖dP ‖ ≤ ‖dG‖ ≤ ‖d‖ = 1.

Similarly fG and gG have unit norm. Therefore,

hG = dG + e
2πi
3 fG + e

4πi
3 gG

is the decomposition of hG, hG is of unit norm and d (hG,C1G) is 1. Using Theorem 3.11,

1 = ‖h‖ ≥ d (h, Z (A)) ≥ d (hG,C1G) = 1.

Thus d (h, Z (A)) is 1.
Let S be a primitive ideal of A. Since d, f and g have unit norm, dS , fS and gS lie in the unit

ball of A/S. Since IJK is zero, S contains at least one of d, f and g. Suppose d lies in S. Then dS
is zero and, as argued in Chapter 3,

‖hS − λ (hS)‖ = d (hS ,C1S) ≤
√

3
2 .

Similarly if f or g lie in S. By Corollary 3.9,

‖adA a‖ ≤
√

3 =
√

3d (h, Z (A)) ≤
√

3K (A) ‖adA a‖ .

Therefore K (A) ≥ 1√
3
.

The last component of the categorisation theorem is [31], Theorem 3.4.

Theorem 5.6. Let A be a unital C*-algebra such that Ks (A) = 1
2 . Then K (A) ≤ 1√

3
.

Proof. Let a be an element of A and let G be a Glimm ideal of A. Let b be the element a− λ (aG)
of A and let B be the C*-algebra A/G. Then λ (bG) is zero by Theorem 3.4. By Lemma 3.2 (4),
UA (b) has its circumcentre at the origin and it follows that the circumradius is ‖b‖. Lemma 3.5
implies that there exist elements f and g of NB such that

|f (bG)− g (bG)| ≥
√

3 ‖bG‖ , |f (bG)| = |g (bG)| = ‖bG‖ .

As in the proof of Theorem 5.4, there exist nets (fλ)λ∈Λ and (gλ)λ∈Λ in the set {g ∈ GB : g (1) ≥ 0}
converging to f and g respectively with corresponding families of primitive ideals

Pλ = ΓA (fλ ◦ pG) , Qλ = ΓA (gλ ◦ pG)
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containing G. Let Rλ be the intersection of Pλ and Qλ. Since Ks (A) is 1
2 , Theorem 5.3 implies that

Rλ is primal.
Since (fλ)λ∈Λ and (gλ)λ∈Λ are weak* convergent to f and g respectively, for each ε > 0 there

exists λ in Λ such that

|fλ (bG)− f (bG)| < ε, |gλ (bG)− g (bG)| < ε.

Then
|fλ (bG)− gλ (bG)| ≥

√
3 ‖bG‖ − 2ε.

Let L be the perpendicular bisector of the line from fλ (bG) to gλ (bG). Since fλ (bG) and gλ (bG) are
the same distance from the origin, L passes through the origin. Let µ be a complex number. Since
fλ (1) and gλ (1) are both positive, µfλ (1) and µgλ (1) both lie on the same side of L, see Figure
5.1. Hence at least one of the inequalities

|fα (bG − µ)| ≥ 1
2

√
3 ‖bG‖ − ε

|gα (bG − µ)| ≥ 1
2

√
3 ‖bG‖ − ε

must hold. Thus,

‖bRλ − λ (bRλ)‖ ≥ max {|fα (bRλ − λ (bRλ))| , |gα (bRλ − λ (bRλ))|}

≥ 1
2

√
3 ‖bG‖ − ε.

It now follows that

Figure 5.1: The positions of µfλ (1) and µgλ (1).

‖adA a‖ = ‖adA b‖
= 2 sup {‖bP − λ (bP )‖ : P ∈ PrimalA}

≥
√

3 ‖bG‖

=
√

3 ‖aG − λ (aG)‖ .

Since G was arbitrary, it follows that

d (a, Z (A)) ≤ 1√
3
‖adA a‖ ,

and hence K (A) ≤ 1√
3
.

We are now in a position to state and prove the categorisation theorem [31], Section 3.

Theorem 5.7. Let A be a unital C*-algebra. Then K (A) and Ks (A) are zero if and only if A is
commutative. When A is non-commutative there are three mutually exclusive cases:
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(i) K (A) = Ks (A) = 1
2 if and only if whenever three primitive ideals of A contain the same

Glimm ideal of A their intersection is primal.

(ii) K (A) = 1/
√

3, Ks (A) = 1
2 if and only if whenever two primitive ideals of A contain the same

Glimm ideal of A their intersection is primal, but there exist three primitive ideals containing
the same Glimm ideal whose intersection is not primal.

(iii) K (A) ≥ Ks (A) ≥ 1 if and only if A has two primitive ideals which contain the same Glimm
ideal, but whose intersection is not primal.

Proof. The commutative case is immediate from the definition. Consider A non-commutative. Sup-
pose that whenever three primitive ideals contain the same Glimm ideal their intersection is primal.
By Theorem 5.4, K (A) = 1

2 . Since A is non-commutative, K (A) ≥ Ks (A) ≥ 1
2 so Ks (A) = 1

2 . The
converse of (1) follows from Theorem 5.5.

Suppose that whenever two primitive ideals contain the same Glimm ideal their intersection is
primal, but there exist three primitive ideals containing the same Glimm ideal whose intersection is
not primal. Then, by Theorem 5.3, Ks (A) = 1

2 and, by Theorem 5.5 and Theorem 5.6, K (A) =

1/
√

3. Conversely, if K (A) = 1/
√

3 and Ks (A) = 1
2 , then every pair of primitive ideals containing

the same Glimm ideal has primitive intersection by Theorem 5.3, but there exist three primitive ideals
containing the same Glimm ideal with non-primal intersection to avoid contradicting Theorem 5.4.
This proves (2).

Finally, (3) follows immediately from Theorem 5.3.

We now give some examples to show that each of the possibilities in Theorem 5.7 occur.

Example 5.8. Let H be a separable infinite-dimensional Hilbert space. As shown in [20], page 747,
the only ideals of B (H) are {0}, K (H) and B (H) where K (H) is the C*-algebra of compact linear
operators. The identity map on B (H) is an irreducible representation so {0} is a primitive ideal
The hull of K (H) is non-empty, but the only possible element is K (H), so K (H) is a primitive
ideal. Hence

PrimB (H) = {{0} ,K (H)} .

Since PrimB (H) is closed under intersection and primitive ideals are primal, it follows that every
intersection of primitive ideals is primal. Thus K (A) and Ks (A) are 1

2 . This agrees with the results
of [33] as described in Chapter 3.

The following example is given in [31], Example 3.5.

Example 5.9. Let A be the set of sequences (an) in M2 (C) such that the subsequences (a3r),
(a3r+1) and (a3r+2) converge in M2 (C) to matrices of the form(

λ1 (a) 0
0 λ2 (a)

)
,

(
λ2 (a) 0

0 λ0 (a)

)
,

(
λ0 (a) 0

0 λ1 (a)

)
,

for some complex numbers λ0 (a), λ1 (a) and λ2 (a). With pointwise defined operations and the
supremum norm, A is a C*-algebra. Define a *-homomorphism πn : A→ M2 (C) to be the natural
map giving the nth term of A. Clearly πn is surjective and it is elementary to check that M2 (C)

′
is

C1. Hence πn is an irreducible representation of A and Pn is a primitive ideal where

Pn = kerπn = {a ∈ A : an = 0} n ∈ N.

Define three characters on A by

xj (a) = λj (a) j = 0, 1, 2.

Then Q0, Q1 and Q2 are also primitive ideals of A where

Qj = kerxj= {a ∈ A : λj (a) = 0} j = 0, 1, 2.
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It can be shown that these are all the primitive ideals of A. Recall from our discussion of Glimm
ideals that two primitive ideals contain the same Glimm ideal if and only if their intersections with
the centre agree. It is easy to check that

Z (A) = {(zn) ∈ A : zn ∈ Z (M2 (C)) ∀n ∈ N} ,

and that
Pn ∩ Z (A) = Pm ∩ Z (A) ⇔ n = m.

Similarly,
Pn ∩ Z (A) 6= Qj ∩ Z (A) j = 0, 1, 2

so Pn is the only element of [Pn] , and hence the Pn are all Glimm ideals. Recall that, for all a in
M2 (C),

‖a‖ = sup
{
‖ax‖ : x ∈ C2, ‖x‖ = 1

}
≥
√
|a11|2 + |a21|2,

√
|a12|2 + |a22|2

≥ |a11| , |a21| , |a12| , |a22| .

Let (an) be an element of A. Then∥∥∥∥a3n −
(
λ1 (a) 0

0 λ2 (a)

)∥∥∥∥→ 0 as n→∞

so
(
a3n

11

)
converges to λ1 (a) and

(
a3n

22

)
converges to λ2 (a). Let U be an open neighbourhood of Q1

and let C be the closed set PrimA\U . Suppose that, for all natural numbers n, there exists Nn
greater than n such that P3Nn lies in C. Then (P3Nn) is a sequence in C and kerC is a subset of I,
where

I =
⋂
n∈N

P3Nn .

Let (an) be an element of I. Then a3Nn is zero for each n in N. Thus

λ1 (a) = lim
n→∞

(
a3n

11

)
= lim
n→∞

(
a3Nn

11

)
= 0.

This implies that I is a subset of Q1 and hence that Q1 lies in C which is a contradiction. Therefore
there exists n0 in N such that P3Nn lies in U for all n greater than n0. We have shown that P3Nn

is a net in PrimA converging to Q1. Similarly P3Nn converges to Q2. It is clear that {Q1, Q2} is
the hull of Q1 ∩Q2 so it follows from Theorem 2.7 that Q1 ∩Q2 is primal. Similarly Q2 ∩Q0 and
Q0 ∩Q1 are primal. Hence Q0, Q1 and Q2 all belong to the same equivalence class and are the only
ideals in this class. The only distinct primitive ideals which contain the same Glimm ideal are Q0,
Q1 and Q2. As we have seen any two of these have primal intersection. Define

Ij = ∩n∈NP3n+j j = 0, 1, 2.

Then I0I1I2 is zero but
I1 * Q1, I2 * Q2, I3 * Q3.

Hence, Q0 ∩ Q1 ∩ Q2 is not primal. Thus, by the characterisation theorem,
Theorem 5.7, Ks (A) = 1

2 and K (A) = 1√
3
.

The final example is the author’s own modification of Example 5.9. See also [32], Example 2.8.

Example 5.10. Let A be the set of sequences (an) in M2 (C) such that the subsequences (a4r),
(a4r+1), (a4r+2) and (a4r+3) converge in M2 (C) to matrices of the form(

λ1 (a) 0
0 λ2 (a)

)
,

(
λ2 (a) 0

0 λ3 (a)

)
,(

λ3 (a) 0
0 λ0 (a)

)
,

(
λ0 (a) 0

0 λ1 (a)

)
,
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for some complex numbers λ0 (a), λ1 (a), λ2 (a) and λ3 (a). With pointwise defined operations and
the supremum norm, A is a C*-algebra. As above, Q0, Q1, Q2 and Q3 are primitive ideals of A
where

Qj = kerxj = {a ∈ A : λj (a) = 0} j = 0, 1, 2, 3

and Q1 ∩Q2, Q2 ∩Q3, Q3 ∩Q0 and Q0 ∩Q1 are primal and hence contain the same Glimm ideal.
Define

Ij = ∩n∈NP3n+j j = 0, 1, 2, 3.

Then I0I1I2I3 = {0} but

I0 * Q3, Q0, I1 * Q0, Q1, I2 * Q1, Q2, I3 * Q2, Q3

so Q0 ∩ Q2 and Q1 ∩ Q3 are not primal. Hence by the characterisation theorem, Theorem 5.7,
K (A) ≥ Ks (A) ≥ 1.
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Chapter 6

Related Results

In this chapter we present a brief survey of other results concerning K (A) and Ks (A), and consider
how they relate to the theory developed in this paper. Proofs will not always be given.

First, we recall some definitions. A C*-algebra A is said to be quasicentral if no primitive ideal
of A contains Z (A). Clearly all unital C*-algebras are quasicentral. An equivalence relation is said
to be open if the quotient map is open. Let X is a subspace of a Banach space Y . Then X is said
to be proximinal if, for each y in Y , there exists x in X such that

‖x− y‖ = d (y,X) .

Let A be a C*-algebra. We define a relation ∼ on PrimA by P ∼ Q if and only if P and Q
cannot be separated by disjoint open sets. Clearly ∼ is reflexive and symmetric, but is not necessarily
transitive. By Corollary 2.8, P ∼ Q if and only if P ∩ Q is primal. It is easy to see that if P ∼ Q
then P ≈ Q, but the converse is false. However, [30], Proposition 3.2, states that if A is quasicentral
and ∼ is an equivalence relation then ∼ and ≈ agree on PrimA. It is easy to check that for A
quasicentral ∼ is an equivalence relation if and only if whenever two primitive ideals contain the
same Glimm ideal then their intersection is primal. The relations also agree when every Glimm ideal
is primal [30].

The class of C*-algebras for which ∼ is an open equivalence relation are termed quasi-standard
[7], Section 1. The quasi-standard C*-algebras include von-Neumann algebras, AW*-algebras, pre-
standard algebras, C*-algebras for which the Jacobson topology is Hausdorff and a number of group
C*-algebras. They have important connections to the problem of representing a C*-algebra as an
algebra of cross sections over a base space. Specifically, a separable C*-algebra is quasi-standard if
and only if it is *-isomorphic to a maximal full algebra of cross sections over a base space such that
the fibre algebras are primitive throughout a dense subset (see [7] and [30] for details).

The relation ∼ also proves important in determining information about K (A) and Ks (A). Let
the primitive ideals of a unital C*-algebra A be the nodes of a graph with points P and Q connected
if and only if P ∼ Q. The distance between nodes is the length of the shortest path or infinity if
no such path exists. The diameter of a set of nodes is the supremum of the distances between the
nodes, with the non-standard convention that the diameter of a singleton set is 1. Then we define
OrcA to be the supremum of the diameters of the connected components of the graph of PrimA
[32], Section 2. The following important theorem is the main result of [32].

Theorem 6.1. Let A be a non-commutative unital C*-algebra. Then

Ks (A) =
1

2
OrcA.

Since OrcA is a positive integer or infinity it follows that Ks (A) is of the form n
2 , with n a

natural number, or infinity. Examples are given in [32], Example 2.8, to show that all of these values
occur.

If ∼ is an equivalence relation on PrimA then, by transitivity, the shortest path between two
connected points P and Q is P ∼ Q and OrcA is 1. Conversely, if OrcA is 1 and, for distinct
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primitive ideals P , Q and R, P ∼ Q and Q ∼ R, then the shortest path between P and R has unit
length, and therefore P ∼ R. Hence, if A is a non-commutative unital C*-algebra, Ks (A) = 1

2 if
and only if ∼ is an equivalence relation, if and only if whenever two primitive ideals contain the
same Glimm ideal their intersection is primal. Otherwise OrcA ≥ 2 so Ks (A) ≥ 1. Hence we have
deduced Theorem 5.3 from Theorem 6.1.

Let A be a von-Neumann algebra. Recall that non-trivial von-Neumann algebras are always
unital [23], Theorem 4.1.7. In [36], Zsidó showed that the function Ix → λ (aKx) is continuous on
PrimZ (A). Then by Theorem 2.12, there exists za in Z (A) such that λ (aKx)− za lies in Ix for all
x in ∆ (Z (A)). Since each Glimm ideal Kx contains Ix,

λ (aG) = zaG

for all G in GlimmA. Furthermore, Zsidó showed that the norm of a− za equalled the distance of a
from Z (A), i.e. that Z (A) was proximinal in A. In [31], Corollary 2.5, Somerset extends this result
to show that Z (A) is proximinal for any quasi-standard C*-algebra. The question of whether Z (A)
is proximinal for a general C*-algebra is open [31].

Using this result and [17], Theorem 4.7, which states that every Glimm ideal of a von-Neumann
algebra is primitive, Zsidó argued:

2d (a, Z (A)) = 2 ‖a− za‖
= 2 sup {‖aG − λ (aG)‖ : G ∈ GlimmA}
≤ 2 sup {‖aP − λ (aP )‖ : P ∈ PrimA}
= ‖adAa‖ .

Hence K (A) ≤ 1
2 so it was shown that, for a non-commutative von-Neumann algebra, K (A) = 1

2 .
Somerset generalised this to the following ([31],
Theorem 2.7).

Theorem 6.2. Let A be a non-commutative unital C*-algebra. If every Glimm ideal of A is primal
then K (A) = 1

2 .

Proof. By Theorem 3.11 and Proposition 4.4,

2d (a, Z (A)) = 2 sup {‖aG − λ (aG)‖ : G ∈ GlimmA}
≤ 2 sup {‖aP − λ (aP )‖ : P ∈ PrimalA}
= ‖adAa‖ .

Then K (A) ≤ 1
2 and hence K (A) = 1

2 .

Of course, if every Glimm ideal is primal, every intersection of primitive ideals containing the
same Glimm ideal is primal, so we can recover this result from the categorisation theorem, Theorem
5.7.

By [7], Theorem 3.3, equivalence of (i) and (iv), if A is a quasi-standard C*-algebra then GlimmA
is the set of minimal primal ideals. In [31], Lemma 2.8, it is shown that if A is a quotient of a AW*-
algebra then each Glimm ideal is prime. Hence we have [31], Corollary 2.9.

Corollary 6.3. Let A be a non-commutative unital C*-algebra. If A is quasicentral or a quotient
of an AW*-algebra then K (A) = 1

2 .

We now consider a connection between K (A) and the theory of derivations of a C*-algebra A.
We begin with some definitions and technical results.

A derivation on a C*-algebra A is said to be a *-derivation if

D (a∗) = D (a)
∗

for all a in A. Let X and Y be normed spaces, and let T be a linear operator, with domain D (T )
in X and range R (T ) in Y . Then T is said to be closed if, whenever (xn) is a sequence in D (T ),
convergent to x in X, such that (Txn) converges to some y in Y , then x lies in D (T ) and Tx is y.
The following is the well known Closed Graph Theorem [22], Theorem 4.13-2.
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Theorem 6.4. Let X and Y be Banach spaces and T a closed linear operator with domain in X
and range in Y . If D (T ) is closed in X, then T is bounded.

The next two results are from the proof of [29], Theorem 2.3.1.

Lemma 6.5. Let a be a self adjoint element of a unital C*-algebra A. Then there exists a state x
such that |x (a)| equals ‖a‖, and, for any such state, x (D (a)) is zero for every *-derivation D on
A.

Proof. Since a is self adjoint, ‖a‖ lies in its spectrum, and, by Lemma 3.2, such an x exists. Consider
the case x (a) equals ‖a‖. By the functional calculus ‖a‖ − a is positive. Hence it is equal to b2 for
some positive b. Since D (1) is zero for any derivation,

|−x (D (a))| = |x (D (‖a‖ − a))|
=
∣∣x (D (b2))∣∣

≤ |x (bD (b))|+ |x (D (b) b)| .

By the Schwarz inequality,

|x (bD (b))|2 ≤ x (bb∗)x
(
D (b)

∗
D (b)

)
= x (‖a‖ − a)x

(
D (b)

2
)

= 0.

Similarly for |x (D (b) b)|. Hence x (D (a)) is zero. In the case x (a) equals −‖a‖, replace a with
−a.

Corollary 6.6. Let A be a unital C*-algebra, D a *-derivative and (an) a self adjoint sequence in
A such that (an) converges to zero and (Dan) converges to b in A. Then b is zero.

Proof. Since D is a *-derivative and Asa is norm closed, (b+ an) is a self adjoint sequence and there
exists a sequence (xn) of states such that, for all n in N,

‖b+ an‖ = xn (b+ an) .

Since SA is weak*-compact, by [21], Chapter 5, Theorem 2, there is a subnet (xnλ)λ∈Λ of (xn),
weak*-convergent to some state x. For all λ in Λ,

||x (b)| − ‖b‖| ≤ ||x (b)| − |xnλ (b+ anλ)||+ ||xnλ (b+ anλ)| − ‖b‖|
≤ |x (b)− xnλ (b+ anλ)|+ |‖b+ anλ‖ − ‖b‖|
≤ |x (b)− xnλ (b)|+ |xnλ (anλ)|+ ‖anλ‖
≤ |x (b)− xnλ (b)|+ 2 ‖anλ‖ .

Since (xnλ) weak*-converges to x and (anλ) converges to zero it follows that |x (b)| equals ‖b‖. Now,
Lemma 6.5 implies that x (D (b)) is zero and that xn (D (b+ an)) is zero for each n in N. Hence, for
all n in N,

|x (b)| ≤ |x (b−D (an))|+ |x (D (an))|
≤ ‖b−D (an)‖+ |x (D (b+ an))| .

Given ε > 0, there exists λ in Λ such that

|x (D (an + b))| = |(x− xnλ) (D (b+ an))| < ε
2

‖b−D (anλ)‖ < ε
2

and, hence,
|x (b)| = ‖b‖ = 0.
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We are now able to prove the following important conjecture of Kaplansky. This was proved by
Sakai in [28].

Theorem 6.7. Let A be a unital C*-algebra and let D be a derivation on A. Then D is bounded.

Proof. Since every sequence can be decomposed into a complex sum of self adjoint sequences, Corol-
lary 6.6 extends by linearity to any sequence convergent to zero. Using linearity again shows that any
*-derivation D is a closed linear operator with closed domain A. Hence, by the closed graph theorem,
Theorem 6.4, it is bounded. Any derivation D may be decomposed into a complex sum of *-
derivatives by

D (a) =
D (a∗)

∗
+D (a)

2
+ i

(
iD (a∗)

∗ − iD (a)

2

)
.

Since the *-derivations are bounded it follows that D is bounded.

It is now easy to check that ∆ (A), the set of all derivations on A, is a closed vector subspace of
B (A) and is hence a Banach space.

We now show that the value of K (A) determines whether ∆0 (A), the set of all inner derivations
of A, is norm-closed in ∆ (A). This is implicit in [18], Theorem 5.3. This result is also of historical
importance, as it presumably inspired the definition of K (A).

Theorem 6.8. Let A be a unital C*-algebra. Then ∆0 (A) is norm closed in ∆ (A) if and only if
K (A) is finite.

Proof. Let Z be the centre of A and let ψ : A/Z → ∆0 (A) be the map

ψ (aZ) = adA a

for a in A. It is easy to check that ψ is a well defined linear bijection. Since

‖ψ (aZ)‖ = ‖adA a‖ ≤ 2d (a, Z (A)) = 2 ‖aZ‖ ,

ψ is bounded, and, since its domain is A/Z, it follows that ψ is a closed linear operator. It then
follows from the definition that ψ−1 : ∆0 (A)→ A/Z is a closed linear operator.

Now suppose that ∆0 (A) is norm closed in ∆ (A). Then, by the closed graph theorem, Theorem
6.4, ψ−1 is bounded and

d (a, Z (A)) =
∥∥ψ−1 (adA a)

∥∥ ≤ ∥∥ψ−1
∥∥ ‖adA a‖

for all a in A. Hence K (A) is finite.
Conversely, suppose that K (A) is finite. Then, for all a in A,

1
2 ‖adA a‖ ≤ ‖aZ‖ = d (a, Z (A)) ≤ K (A) ‖adA a‖ .

Thus, the norm defined on ∆0 (A) by

‖adA a‖1 = ‖aZ‖

for a in A is equivalent to the norm induced by ∆ (A). Since A/Z is a Banach algebra it follows
that ∆0 (A) is norm closed in ∆ (A).

In [8], Batty investigated how properties of the derivations of two C*-algebras relate to the
properties of the derivations of their C*-tensor products. Of particular interest to us is the following
result. Let A⊗β B be any C*-tensor product of C*-algebras A and B. Then

K (A⊗β B) ≤ 4K (A) + 2K (B) + 4

where, without loss of generality, we may interchange A and B to get the smaller bound. Archbold
[3] had independently obtained the estimate

K (A⊗β B) ≤ 2K (A) +K (B) + 4.
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Batty also proved [3],
K (A⊗β B) ≤ 1 + (2K (A) + 1) (2K (B) + 1) ,

which gives a smaller bound when K (A) and K (B) are close to 1
2 . The significance of these

inequalities with respect to Theorem 6.8 is that they show that if K (A) and K (B) are finite then
K (A⊗β B) is finite, i.e. if ∆0 (A) and ∆0 (B) are norm closed in ∆ (A) and ∆ (B) respectively then
∆0 (A⊗β B) is norm closed in ∆ (A⊗β B) for any C*-tensor product A⊗β B.

Archbold also investigated the behaviour of K (A) under ideals and quotients in [3]. He gave
an example of a C*-algebra with ideal J such that K (A) was 1

2 but K (A/J) was infinite. In fact,
as was observed in [30], K (A) is very unstable under quotients. Every unital C*-algebra A may
be considered as a quotient of a unital quasi-standard C*-algebra B [30], Proposition 3.7, but then
K (B) is 1

2 regardless of the value of K (A). However Archbold [3], Proposition 3, showed that for
ideals, the following holds:

Proposition 6.9. If A is a C*-algebra and J is an ideal

‖adAa‖ = ‖ad Ja‖

for all a in J . It then follows that
K (J) ≤ 2K (A) .

Since we have concentrated on unital C*-algebras in this paper, it is useful to know that Propo-
sition 6.9 implies that, for a non-unital C*-algebra A,

1
2K (A) ≤ K (A+ C1) ≤ K (A) .

Somerset improves on this result when J is quasicentral in [30], Proposition 5.3, where he shows
that

d (a, Z (J)) = d (a, Z (A))

for all a in J . Combining this with Proposition 6.9 shows that

d (a, Z (J)) = d (a, Z (A)) ≤ K (A) ‖adA a‖ = K (A) ‖adJ a‖

for all a in J , from which it follows that K (J) ≤ K (A). Hence, if A is a non-unital quasicentral
C*-algebra,

K (A) ≤ K (A+ C1) ≤ K (A) ,

so the problem of computing K (A) is reduced to the unital case.
A C*-algebra is weakly central if for maximal ideals M and N of A

M ∩ Z (A) = N ∩ Z (A)⇔M = N .

Archbold proves the following result in [3], Theorem 4.1, using Katetov’s interpolation theorem.

Theorem 6.10. Let A be a weakly central unital C*-algebra and let J be an ideal of A. Then for
self adjoint a in J there exists self adjoint z in Z ∩ J such that

‖a− z‖ ≤ ‖adA a‖ .

In particular Ks (A) ≤ 1.

Somerset [30], Theorem 4.1, uses Helly’s Theorem to show that, when A is weakly central, K (A),
and hence Ks (A), are bounded above by 1.

Example 5.9 shows that K (A) and Ks (A) may have different values. As shown in Chapter 1,

K (A)

Ks (A)
≤ 2.
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Somerset [30] conjectures that
K (A)

Ks (A)
≤ 2√

3
,

the value achieved in Example 5.9. He shows in [30], Proposition 5.15, that

Kn (A)

Ks (A)
≤ 2√

3
,

where Kn (A) is the least element of [0,∞] such that

d (a, Z (A)) ≤ Kn (A) ‖adA a‖

for all normal a in A. He further observes that there is no known example for whichKn (A) andK (A)
disagree. This might suggest the conjecture that Kn (A) and K (A) are always equal. However, the
lack of a counter example is more likely to be due to the lack of tools for calculating Kn (A) and
K (A) in general. When A is a unital C*-algebra and K (A) is bounded above by 1 we can make
the following remark (apparently not stated elsewhere).

Remark 6.11. Let A be a unital C*-algebra with K (A) bounded above by 1. Then K (A) and
Kn (A) are equal.

Proof. By the categorisation theorem, Theorem 5.7, K (A) and Ks (A) agree if K (A) is 1 or 1
2 .

This forces Kn (A) to agree with K (A) and Ks (A). Re-examining the proof of Theorem 5.5 we see
that we in fact proved that when A is a unital C*-algebra with three primitive ideals containing
the same Glimm ideal which have non-primal intersection then Kn (A) is bounded below by 1/

√
3.

Since K (A) is 1/
√

3 in this case we have

K (A) = Kn (A) = 1√
3
.
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