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Abstract

The research presented in this thesis furthers the ongoing investigation

into the structure of JB*-triples, an important class of Banach space with

applications to many areas of mathematics and mathematical physics.

The thesis initiates the study of the connected theories of factorial func-

tionals and primal ideals in the general JB*-triple situation and then gives

applications of these theories, including:

(i) a non-abelian analogue of the Gelfand representation over a base

space of minimal primal ideals;

(ii) an investigation into the primitivity of minimal primal ideals;

(iii) a characterisation of prime JB*-triples in terms of finite factorial

functionals;

(iv) a necessary condition on the factorial functionals for a JB*-triple to

be antiliminal;

(v) a characterisation of elements in the pure functional space of a con-

tinuous JBW*-triple.

Application (i) provides a tool for studying the structure of a class of

JB*-triples. In particular it applies to JBW*-triples. Applications (i) and

(ii) lead to a Gelfand representation of Type I JBW*-triples with primi-

tive fibres. Applications (iii) and (iv) are connected to Stone-Weierstrass

theorems for JB*-triples. Application (v) is of interest because of the

theoretical importance of pure functionals, and because pure functionals

represent the pure states in quantum mechanical models.
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Chapter 1

Introduction

The study of JB*-triples has its origins in the study of bounded symmetric domains.

The algebraic theory was initiated by Koecher [60], Meyberg [63] and Loos [62]. In

particular Koecher was able to obtain Cartan’s classification of bounded symmetric

domains in Cn using Jordan algebras. This approach was more readily adapted to

infinite dimensional complex Banach spaces than Cartan’s Lie algebra method. It

transpired from the work of Kaup, Upmeier and Vigué [58], [72] [74], [75] that the

holomorphic structure of the open unit ball of a complex Banach space A induces a

triple product {. . .} from A×As×A to A, where As is a closed subspace of A called

the symmetric part. In extreme cases, As may be zero, but the Banach spaces A such

that A coincides with As are the JB*-triples. Kaup proved conclusively that JB*-

triples are a natural class of objects by showing that the category of JB*-triples is

equivalent to the category of bounded symmetric domains with base point by means

of the mapping taking the JB*-triple A to its open unit ball.

JB*-triples were subsequently found to have applications to other areas of math-

ematics and mathematical physics; some of these are explored in the exposition [71].

From a more abstract point of view, the class of JB*-triples is of interest as it includes

many important subclasses, such as C*-algebras, JB*-algebras, Hilbert C*-modules

and spin triples. In axiomatic models of statistical physical systems (e.g. quantum

mechanics) the conditional expectations of classical probability theory are replaced

by contractive projections. However, neither the class of C*-algebras or the larger
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class of JB*-algebras usually used in such models are closed under all contractive

projections. The fact that the category of JB*-triples is closed under all contractive

projections, and thus suitable for use in these axiomatic models, is perhaps the most

persuasive argument for its study [59].

These facts have inspired an extensive study into the structure of JB*-triples by

several authors (see the References section). It has been shown that many well known

results from the theory of C*-algebras are in fact consequences of JB*-triple results.

The lack of a global order structure or an underlying Hilbert space in the JB*-triple

case often necessitates new or modified proofs, which in turn leads to new insights

and even new results for C*-algebras. This will be demonstrated in this thesis, as

existing results in the theory of factorial states and primal ideals of C*-algebras may

be recovered from our results.

This thesis has two primary aims; to investigate a Gelfand-Naimark representation

for JB*-triples (Chapters 3-6) and to study the factorial functionals of JB*-triples

(Chapter 7). The connection between these two topics is the involvement of primal

ideals in both theories.

To better describe the results obtained, it will be convenient to first introduce

some concepts and notation.

1.1 Concepts and notation

Let A be a JB*-triple and let Z(A) be the set of bounded operators T from A to

itself, satisfying, for elements a, b and c in A,

T{a b c} = {Ta b c}.

The space Z(A) is said to be the centralizer of A and is a commutative unital C*-

algebra with involution T 7→ T † satisfying

T{a b c} = {a T †b c}

2



for all elements T in Z(A) and a, b and c in A.

A JB*-triple A possessing a (necessarily unique) predual A∗ is said to be a JBW*-

triple. The bidual A∗∗ of a JB*-triple A is always a JBW*-triple. A subspace J of the

JB*-triple A is said to be an ideal in A, when {J AA} and {AJ A} are contained in J .

This is exactly what is required for the triple product on A to induce a triple product

on the quotient space A/J , and when J is closed, J and A/J are themselves JB*-

triples. When A is a JBW*-triple and J is a w*-closed ideal of A, A/J has a natural

identification with a w*-closed ideal J⊥ of A, and A can be decomposed into an l∞ sum

of J and J⊥. A JBW*-triple A is said to be a factor if the only such decomposition is

the trivial one. The factors can be given a Murray von-Neumann type classification.

Thus factors are the basic building blocks from which more complex JBW*-triples

are built.

The discrete factors in the Murray von-Neumann classification are known as Car-

tan factors, and reduce to the classical Cartan factors in the finite-dimensional sit-

uation. The pure functionals of a JB*-triple A are the elements of the set ∂eA
∗
1 of

extreme points of the unit ball of A∗, the dual of A. Each element x of A∗ has a

w*-closed ideal Mx of A∗∗ associated with it. The w*-closed ideals Mx for x in ∂eA
∗
1

are exactly the Cartan factors contained in A∗∗. There exists a natural triple ho-

momorphism πx from A onto a w*-dense subset of Mx. An ideal of A is said to be

primitive if it is the kernel kerπx of πx for some x in ∂eA
∗
1. The set of primitive ideals

is denoted by PrimA. A JB*-triple is said to be primitive if the zero ideal is primitive.

In particular, for every x in ∂eA
∗
1, A/ kerπx is primitive and πx induces an injective

homomorphism identifying A/ kerπx with a w*-dense subtriple of Mx. Cartan factors

and primitive ideals play a fundamental role in the theory. For example, the main

result of [45] is a Gelfand-Naimark theorem for JB*-triples.

The classes of factorial functionals and primal ideals referred to in the title of

this thesis are enlargements of the classes of pure functionals and primitive ideals

respectively. A functional x in A∗, the dual of a JB*-triple A, is said to be factorial if

the w*-closed ideal Mx of the bidual A∗∗ associated with x is a factor. A norm-closed

ideal J of the JB*-triple A is said to be primal if whenever J1, . . . , Jn are norm-closed
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ideals of A such that ∩nj=1Jj is zero, Jj is a subset of J for some j in 1, . . . , n.

A more detailed summary of the theory of JB*-triples is presented in Chapter 2.

1.2 A Gelfand-Naimark representation

The first aim of this thesis is to produce a Gelfand representation for JB*-triples.

Given a JB*-triple A, the object is to find a locally compact Hausdorff space, Ω,

known as the base space, associate to each point ω in Ω a JB*-triple Aω, the fibre

at ω, and represent each element a of A as an element â of
∏

ω∈Ω Aω. For this

representation to be of use in the study of A, the representation must decompose

the structure of A into the structure of the fibres, and the fibres must belong to an

accessible subclass of the class of JB*-triples. To this end, a representation satisfying

the following conditions is sought:

(S1) the range of the representation is a structure known as a maximal full triple of

cross-sections (defined in Chapter 5);

(S2) the fibres on a dense subset of the base-space are primitive.

A JB*-triple possessing a representation satisfying conditions S1 and S2 is said to be

densely standard. The motivation for and utility of constructing a Gelfand represen-

tation of a densely standard JB*-triple can be seen by considering the example of an

associative JB*-algebra A. Take Ω to be PrimA, the primitive spectrum of A, and

let Ω(A) denote the character space equipped with the w*-topology. Then, the map

x 7→ kerx is a homeomorphism from Ω(A) onto PrimA, and PrimA coincides with

the set of maximal modular ideals of A. For each element x in Ω(A), the primitive

quotient A/ kerx can be canonically identified with the complex field, and, for all

elements a in A,

â(kerx) = x(a).

Thus, the map kerx 7→ a + kerx is the usual Gelfand representation x 7→ x(a) of

a. The centralizer of C0(Ω), the continuous functions on Ω vanishing at infinity, is

*-isomorphic to Cb(Ω), the continuous bounded functions on Ω ([64], Example 3.1.3).
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It is shown (Proposition 5.9, Theorem 5.10, Theorem 5.13) that if A is a JB*-

triple possessing a representation satisfying condition S1 then the representation de-

composes pure functionals and norm-closed ideals of A into the corresponding objects

in the fibres, and a Glimm Stone-Weierstrass type theorem holds. Condition S1 also

allows Ω to be identified with a set of norm-closed ideals of A, constructed from the

primitive spectrum of A (Theorem 5.16). To investigate the implications of imposing

condition S2 on the representation, the weaker condition

(S2′) Ω possesses a dense subset of primal ideals

is introduced. A JB*-triple is said to be quasi-standard if it possesses a representation

satisfying conditions S1 and S2′. It is shown (Theorem 5.17) that, for a quasi-standard

JB*-triple, Ω is unique up to homeomorphism and may be identified with the complete

regularisation of PrimA, and with the set of minimal primal ideals. Furthermore, the

representation transforms the action of the centralizer Z(A) of A into the action

of pointwise multiplication by elements of Cb(Ω), the space of continuous bounded

complex-valued functions on Ω (Corollary 5.18).

The uniqueness of the base space of a quasi-standard JB*-triple simplifies the

process of determining which JB*-triples are quasi-standard and which are densely

standard. It is shown (Theorem 6.13) that all JBW*-triples are quasi-standard and

that Type I JBW*-triples are densely standard (Theorem 6.24). The class of JB*-

triples with Hausdorff primitive spectrum is densely standard (Theorem 5.21). This

class includes some interesting subclasses such as JB*-triples of finite rank and abelian

JB*-triples, even though abelian JB*-triples need not be associative JB*-algebras.

There are examples of JB*-triples, even in the class of C*-algebras, which are not

quasi-standard ([73], p296).

1.3 Factorial functionals

Factorial functionals have been studied in arbitrary Banach spaces ([28]) and in or-

dered spaces ([27], [78]) where attention is restricted to those factorial functionals
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which are also states. Factorial states have been studied in connection with the cen-

tral decomposition theorem for JB*-algebras ([78]) and with various Stone-Weierstrass

problems in the C*-algebra case ([5], [16]).

This thesis begins the development of the theory of factorial functionals for an

arbitrary JB*-triple. It is shown that a JB*-triple is prime if and only if the facto-

rial functionals are w*-dense in the surface of the dual unit ball (Proposition 7.21)

and that the set of pure functionals of an antiliminal JB*-triple are w*-dense in the

set of factorial functionals. Together these results form a partial decomposition of

[21], Theorem 5.6, a key step in the proof of the important Glimm Stone-Weierstrass

theorem for JB*-triples ([67], Theorem 6.2). In the process, a number of interesting

technical results are obtained, including the construction of Type I factorial function-

als as σ-convex sums of pure functionals (Proposition 7.10) and a characterisation of

primal ideals of JB*-algebras in terms of w*-density of factorial functionals in faces

of the state space (Theorem 7.11).

It is shown that every functional in the dual unit ball of a JB*-triple induces a

state on the centralizer. The theory of factorial functionals is then used to deduce

the final theorem of the thesis, a characterisation of the pure functional space of a

continuous JBW*-triple in terms of those functionals which induce characters of the

centralizer (Theorem 7.31).

1.4 Structure of material

In Chapter 2, the basic theory of JB*-triples is summarised.

In Chapter 3, the lattice of M-ideals of a Banach space is studied. Many of the

results depend on purely lattice theoretic considerations, and will be introduced in

this context to aid clarity.

In Chapter 4, some results concerning central kernels are established for later use

and the discussion of Chapter 3 is specialised to the ideal structure of JB*-triples. A

number of facts connected with the primitive spectrum of a JB*-triple are established.

In Chapter 5, the results of Chapter 3 and Chapter 4 are applied to construct
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representations of JB*-triples over base spaces of primal ideals.

In Chapter 6, the results of Chapter 5 are applied to show that JBW*-triples are

quasi-standard and, furthermore, that Type I JBW*-triples are densely standard.

In Chapter 7, the factorial functionals of a JB*-triple and their connection to

primal ideals are studied. A number of applications to the structure theory of JB*-

triples are given.
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Chapter 2

JB*-triples

JB*-triples are the principal object of study in this thesis. JB*-triples were originally

introduced by Kaup [58] in the context of infinite dimensional holomorphy, but their

suggested role in quantum mechanics has led to an extensive investigation of their

algebraic and geometric properties. For the purposes of this thesis, it will be conve-

nient to consider a JB*-triple as a vector space equipped with an algebraic structure

(a Jordan *-triple product) and a Banach norm in such a way that the algebraic

structure is intimately intertwined with the geometry of the Banach space. This

will be seen to be analogous to the usual view of C*-algebras as *-algebras equipped

with a Banach algebra norm satisfying the C*-condition. Indeed, C*-algebras are an

important sub-class of the JB*-triples.

The aforementioned algebraic structures, Jordan *-triples, are less well known

than *-algebras and it is therefore necessary to review briefly their properties in

Section 2.1 before introducing JB*-triples in Section 2.2. In the process, a sub-class

of the JB*-triples will be encountered, the JB*-algebras. The underlying algebraic

structure of a JB*-algebra is a commutative non-associative *-algebra known as a

Jordan *-algebra. JB*-algebras play an important part in the theory of JB*-triples,

as well as being objects of great interest in their own right. The class of JB*-algebras

includes the class of C*-algebras.

The class of JBW*-triples has a more complete and satisfactory theory than the

class of JB*-triples. The bidual of every JB*-triple is a JBW*-triple. Therefore the
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JBW*-triples play an important role in the theory.

2.1 Algebraic Jordan structures

2.1.1 Jordan algebras

This section introduces Jordan algebras, following [51], Chapter 2, to which the reader

is referred for further details. Jordan *-algebras are important both as a subclass of

the Jordan *-triples introduced in Section 2.1.2, and as a tool in the development of

their theory.

An algebra A is a real or complex vector space with a bilinear multiplication

(a, b) 7→ ab from A× A to A. We define operators La, Ra from A to A by

Lab = ab Rab = ba

for all a and b in A. A complex algebra equipped with an involution is said to be a

*-algebra.

Powers of an element a of A are defined inductively by

a1 = a; an = aan−1; n ≥ 2.

The algebra A is said to be commutative if ab equals ba and associative if (ab)c equals

a(bc) for all a, b and c in A. If A is a commutative algebra with multiplication

(a, b) 7→ a ◦ b satisfying the Jordan axiom,

a ◦ (b ◦ a2) = (a ◦ b) ◦ a2, a, b ∈ A,

then A is said to be a Jordan algebra. In a Jordan algebra A, the power law

an+m = an ◦ am n,m ∈ N

holds for all elements a in A. A Jordan multiplication (a, b) 7→ a ◦ b can be defined
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on any associative algebra A by

a ◦ b =
1

2
(ab+ ba), a, b ∈ A.

When a Jordan algebra is of this form it is said to be special and the product ◦ is

said to be the special product. Otherwise it is said to be exceptional. The powers of

a special Jordan algebra agree with the powers in the underlying associative algebra.

Let A be a Jordan algebra. Elements a and b of A are said to operator commute if

the operators La and Lb commute. An element of A which operator commutes with

all other elements of A is said to be central. The centre Z(A) of A is defined to be

the associative subalgebra of central elements of A. A Jordan *-algebra is a Jordan

algebra equipped with an involution ∗ such that, for all elements a and b in A,

(a ◦ b)∗ = b∗ ◦ a∗ = a∗ ◦ b∗.

A self-adjoint idempotent of a Jordan *-algebra A is said to be a projection. The

set of projections is denoted by P(A) and the set of central projections by ZP(A).

Projections p and q of A are said to be orthogonal, written p⊥q if p ◦ q, is zero.

2.1.2 Jordan *-triples

A *-triple over C is a complex vector space A with triple product {. . .} : A3 7→ A

which is symmetric and linear in the first and third variables and conjugate linear in

the second. For any elements a and b of A, operatorsD(a, b) : A 7→ A, Q(a, b) : A 7→ A

and ◦a : A× A 7→ A are defined by

D(a, b)t = {a b t} Q(a, b)(t) = {a t b} r ◦a s = {r a s}

for all elements r, s and t of A. We write D(a) for D(a, a) and Q(a) for Q(a, a).

A Jordan *-triple is a *-triple A satisfying the following weak associativity for all

10



a, b, r, s in A:

{r a {r b r}} = {r {a r b} r}

{{r a r} a s} = {r {a r a} s}

Example 2.1 Let A be a Jordan *-algebra. Then A is a Jordan *-triple with respect

to the triple product defined for a, b and c in A by

{a b c} = (a ◦ b∗) ◦ c− (a ◦ c) ◦ b∗ + a ◦ (b∗ ◦ c).

When A is an associative *-algebra with the special product,

{a b c} =
1

2
(ab∗c+ cb∗a).

A number of ‘triple identities’ follow from the definition of a Jordan *-triple by

linearisation. See [62] for a comprehensive list and proofs.

Theorem 2.2 A *-triple A is a Jordan *-triple if and only if it satisfies the following

identity for all elements a, b, r, s and t of A:

{a b {r s t}} = {{a b r} s t} − {r {b a s} t}+ {r s {a b t}}.

For any element a of the Jordan *-triple A, the pair (A, ◦a) is a commutative

algebra known as the a-homotope. Using the triple identities, it can be seen that

(A, ◦a) is a Jordan algebra.

We define odd powers of an element a of A by

a1 = a; a2n−1 = {a a2n−3 a}; n ≥ 2.

An inductive argument shows that for all a in A and odd powers m1, m2 and m3, the

power law

{am1 am2 am3} = am1+m2+m3
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is satisfied. The Jordan *-triple A is said to be abelian if, for all a, b, c and d in A,

the operators D(a, b) and D(c, d) commute.

A subspace J of A is said to be a subtriple if {J J J} lies in J , an ideal if {AAJ}+

{AJ A} lies in J and an inner ideal if {J AJ} lies in J . Clearly ideals are inner ideals

and inner ideals are subtriples. When J is an ideal, the quotient space A/J is a Jordan

*-triple in the natural way.

An element e in A is said to be a tripotent if {e e e} equals e. The set of tripotents

is denoted by U(A). The proof of Theorem 2.3 may be found in [62], Theorem 5.4.

Theorem 2.3 Let A be a Jordan *-triple and let e be a tripotent in A. Let D(e) be

the linear operator and let Q(e) be the conjugate linear operator defined for a in A by

D(e)a = {e e a}, Q(e)a = {e a e},

let P0(e), P1(e) and P2(e) be the linear operators defined by

P0(e) = I − 2D(e) +Q(e)2, P1(e) = 2(D(e)−Q(e)2), P2(e) = Q(e)2,

and let

Aj(e) =

 Pj(e)A j ∈ {0, 1, 2}

{0} j ∈ Z\{0, 1, 2}

Then, the following results hold.

(i) The operators D(e) and Q(e) satisfy the equations

Q(e) = Q(e)3 = D(e)Q(e) = Q(e)D(e).

(ii) The operators P0(e), P1(e) and P2(e) are mutually orthogonal projections, sat-
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isfying the equations

P0(e) = (I −D(e))(I − 2D(e))

P1(e) = 4D(e)(I −D(e))

P2(e) = D(e)(2D(e)− I)

and

IdA = P0(e) + P1(e) + P2(e), D(e) = 1
2
(0P0(e) + 1P1(e) + 2P2(e)).

(iii) A has the decomposition

A = A0(e)⊕ A1(e)⊕ A2(e)

(iv) For j equal to 0, 1, 2, Aj(e) is the j
2
-eigenspace of D(e).

(v) For j, k and l in {0, 1, 2}, the multiplication rules

{Aj(e)Ak(e)Al(e)} ⊆ Aj−k+l(e)

{A2(e)A0(e)A} = {A0(e)A2(e)A} = 0

are satisfied.

(vi) The spaces A0(e) and A2(e) are inner ideals of A, whilst A1(e) is a subtriple of

A.

(vii) The inner ideal A2(e) is a Jordan *-algebra with unit e under multiplication

(a, b) 7→ a ◦e b and involution a 7→ a∗e defined by a 7→ Q(e)a, and the triple

product arising from this Jordan *-algebra coincides with the restriction of the

triple product of A to A2(e).

In the situation described in Theorem 2.3, for j equal to 1, 2, 3, Pj(e) is known as

the Peirce-j projection and Aj(e) is the Peirce-j space associated with the tripotent
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e. The multiplication rules specified in Theorem 2.3 are known as the Peirce rules.

A tripotent e is said to be abelian if the Peirce 2-space A2(e) is an abelian JB*-

triple, minimal if A2(e) is just the space of scalar multiples of e and complete if the

Peirce-0 space A0(e) is zero.

Lemma 2.4 Let A be a Jordan *-triple and let u and v be tripotents in A. Then the

following conditions are equivalent:

D(u)v = 0; D(v)u = 0;

v ∈ A0(u); u ∈ A0(v);

D(u, v) = 0; D(v, u) = 0.

When the conditions of Lemma 2.4 hold, u and v are said to be orthogonal [33].

Proposition 2.5 Let A be a Jordan *-triple and let U(A) be the set of tripotents of

A. Let ≤ be the relation defined on U(A) by u ≤ v if and only if v − u is a tripotent

and v − u is orthogonal to u. Let u and v be tripotents of A such that u ≤ v and let

A2(u) and A2(v) be the Peirce-2 spaces of u and v respectively. Then the following

results hold.

(i) An element w of A is a tripotent w ≤ v if and only if w is a projection in A2(v).

(ii) A2(u) is an inner ideal of the inner ideal A2(v).

(iii) The Jordan *-algebra A2(u) is a *-subalgebra of the Jordan *-algebra A2(v).

(iv) The relation ≤ is a partial ordering of U(A).

2.1.3 Anisotropic Jordan*-triples

A Jordan*-triple A is said to be anisotropic if a in A is zero if and only if a3 is zero.

Let A be an anisotropic Jordan*-triple. Then for a and b in A, D(a, b) is zero if and

only if D(b, a) is zero. Elements a, b satisfying these equivalent conditions are said

to be orthogonal, written a⊥b. Note that when a and b are tripotents, this definition
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coincides with the definition given in Lemma 2.4. The algebraic annihilator of a

subset B of A is the set of elements orthogonal to all elements of B, denoted by B⊥.

Lemma 2.6 Let A be an anisotropic Jordan *-triple and let B and C be subsets of

A. Then:

(i) B⊥ is an inner ideal of A;

(ii) B ∩B⊥ = {0};

(iii) B ⊆ B⊥⊥;

(iv) if B ⊆ C then C⊥ ⊆ B⊥;

(v) if B is a subtriple of A, then B ⊕B⊥ is a subtriple of A, containing B and B⊥

as ideals.

The kernel KerB of a non-empty subset B of A is defined by

KerB = {a ∈ A : {B aB} = 0}.

Clearly B⊥ is contained in KerB and B ∩ KerB is contained in {0}. A subtriple B

of A is said to be complemented if

A = B ⊕KerB.

A linear projection P on A is said to be a structural projection if

PQ(a)P = Q(Pa)

for all a in A.

Proposition 2.7 Let A be an anisotropic Jordan *-triple. Then:

(i) a complemented sub-triple B of A is an inner ideal in A such that

{AB KerB} ⊆ KerB;
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(ii) the range of a structural projection P is a complemented sub-triple with kernel

Ker(rangeP );

(iii) if B is a complemented sub-triple of A, the linear projection P with range B

and kernel KerB is a structural projection on A.

Lemma 2.8 gives an important example of a complemented subspace.

Lemma 2.8 Let A be an anisotropic Jordan *-triple and let u be a tripotent in A.

Then

A2(u)⊥ = A0(u)

and A2(u) and A0(u) are complemented, with

KerA2(u) = A1(u)⊕ A0(u), KerA0(u) = A2(u)⊕ A0(u).

The results of this section can be found in [34].

2.2 JB*-triples

In this section the situation in which the algebraic structures introduced in Section

2.1 possess a complete norm is considered. Let A be a Banach space and let S be a

subset of A. In the sequel, B(A) will be understood to refer to the Banach space of

bounded linear operators on A and S
n

will be understood to refer to the closure of S

in the topology induced on A by the norm. When A has a distinguished predual A∗,

S
w∗

will denote the closure of S in the w*-topology induced on A by A∗.

2.2.1 JB*-algebras

A Jordan *-algebra A equipped with a norm with respect to which it is a Banach

algebra is said to be a JB*-algebra if all elements a in A satisfy

‖a‖ = ‖a∗‖, ‖{a a a}‖ = ‖a‖3.
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A C*-algebra is a JB*-algebra with respect to the multiplication given by the special

product.

A real Jordan algebra A equipped with a norm with respect to which it is a Banach

algebra is said to be a JB-algebra if all elements a and b in A satisfy

‖a2‖ = ‖a‖2, ‖a2‖ ≤ ‖a2 + b2‖.

The self-adjoint part of any JB*-algebra is a JB-algebra. A deeper result is that every

JB-algebra is the self adjoint part of a unique JB*-algebra [79], Theorem 2.8. The

set of squares in a JB-algebra form a proper convex closed cone and a JB*-algebra

will always be assumed to have the partial order induced by this cone ([51], Lemma

3.3.7). An exposition of the theory of JB-algebras is given in [51], and we use this to

deduce some facts about JB*-algebras.

A JB*-algebra possessing a predual A∗ is said to be a JBW*-algebra. Let A+
∗ be

the cone of positive functionals in A∗. The set

S∗(A) = {x ∈ A+
∗ : ‖x‖ = 1}

is said to be the normal state space of A. When A is a JBW*-algebra, P(A) is a

complete orthomodular lattice ([51], Lemma 4.2.8). The second dual A∗∗ of a JB*-

algebra A is a JBW*-algebra which has a separately w*-continuous multiplication

and contains A as a sub-algebra ([51], Theorem 4.4.3). The state space of A, S(A) is

defined to be the normal state space of A∗∗.

The convex geometry of the normal state space of a JBW*-algebra plays a sig-

nificant role in the theory of JBW*-algebras. Recall that a convex subset F of a

convex set C is said to be a face of C if, for all x and y in C and λ in (0, 1) such that

λx + (1 − λ)y lies in F , x and y lie in F . A singleton face is said to be an extreme

point of C. Let K be a convex subset of a vector space V such that the hyperplane

containing K does not contain the origin. Then a face F of K is said to be a split

face if there exists a face F⊥ of K such that for every x in K there exists unique t in
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[0, 1], y in F and z in F⊥ such that x can be written as

x = ty + (1− t)z

and y and z are unique when t lies in (0, 1). Let V be a real vector space and let V +

be a proper convex cone in V . An element x of V is said to be an order unit for V

if, for all y in V , there exists λ in R+ such that

−λx ≤ y ≤ λx.

A real vector space V with order unit x is said to be an order unit space if, for y in

V , ny ≤ x for all n in N if and only if y equals 0. The order norm of the order unit

space V is the norm defined for y in V by

‖y‖ = inf{λ > 0 : −λx ≤ y ≤ λx}.

A functional x on a JB*-algebra A is said to be faithful if, for a in A, x(a∗ ◦ a)

equals zero implies a equals zero.

Theorem 2.9 Let A be a JBW*-algebra with predual A∗. Let A∗,sa be the self-adjoint

part of A∗ and let A+
∗ be the cone of positive elements of A∗. Let x be an element of

S∗(A), the normal state space of A. Let facex be the face of S∗(A) generated by x,

let V +
x be the face of A+

∗ generated by x, and let Vx be the subspace of A∗,sa generated

by V +
x . Then:

(i) V +
x = {y ∈ A+

∗ : 0 ≤ y ≤ λx for some λ ∈ R+};

(ii) x is an order unit for Vx;

(iii) Vx = V +
x − V +

x = {y ∈ A∗ : −λx ≤ y ≤ λx for some λ ∈ R+};

(iv) the following are equivalent:

(a) facex
n

= S∗(A);
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(b) V +
x

n
= A+

∗ ;

(c) Vx
n

= A∗,sa;

(d) x is faithful.

Proof. Statements (i) to (iii) are easily verified. Observe that A∗,sa is the predual

of the JB-algebra Asa of self-adjoint elements of A. Equivalence of (a) and (b) is

elementary, as is (b)⇒(c) and (c)⇒(d). The result (d)⇒(b) is due to King (see [55],

Appendix 2, Lemma 9).

The following result may be found in [50].

Proposition 2.10 Let A be a JBW*-algebra with centre Z(A), let A∗,1 be the unit

ball in the predual and let S∗(A) be the normal state space of A. For a projection p

in Z(A), define

{p}′ = {x ∈ A∗,1 : x(p) = 1}.

Then {p}′ is a norm-closed face of S∗(A) and the map p 7→ {p}′ is an order isomor-

phism from the projections of Z(A) onto the split faces of S∗(A).

A self-adjoint element s of a JBW*-algebra A is said to be a symmetry if s2 is the

unit. By [51], 3.2.10, Q(s)2 is the identity map on A and by Macdonald’s theorem,

Q(s) is an automorphism of Asa. In particular, Q(s) maps projections to projections.

2.2.2 JB*-triples

Let B be a unital Banach algebra with unit 1 and let B∗1 be the dual unit ball of B.

The state space S(B) of B is defined by

S(B) = {x ∈ B∗1 : x(1) = 1};

and the numerical range of an element T in B is the subset V (T ) of the complex

plane defined by

V (T ) = {x(T ) : x ∈ S(B)}.
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The element T in B is said to be hermitian if the numerical range is a subset of

the real line.

Let A be a Jordan *-triple equipped with a norm with respect to which it is a

Banach space and let B(A) be the Banach algebra of bounded operators on A. Then

A is said to be a J*-triple if:

(i) for all a, b and c in A, the linear operator D(a, b)c 7→ {a b c} lies in B(A);

(ii) the map D : A× A 7→ B(A) given by (a, b) 7→ D(a, b) is continuous;

(iii) for all a in A, the linear operator D(a, a) is an hermitian element of B(A).

Since D is a sesquilinear form, (ii) is equivalent to requiring that D is bounded.

This shows that the norm-closure of a sub-triple of a J*-triple A is also a sub-triple

of A. The J*-triple A is said to be positive if D(a, a) is a positive element of B(A).

The following result is [58], 5.3.

Proposition 2.11 Let A be a J*-triple. For elements a and b in A, let D(a) be the

map D(a) : b 7→ {a a b} and let A(a) denote the smallest norm-closed subtriple of A

containing a. Then, the following conditions are equivalent:

(i) A is positive and ‖D(a)‖ equals ‖a‖2 for all a in A;

(ii) A is positive and ‖{a a a}‖ equals ‖a‖3 for all a in A;

(iii) for every a in A, there exists an isometric triple isomorphism from A(a) onto

a commutative C*-algebra.

A J*-triple satisfying the equivalent conditions of Proposition 2.11 is said to be a

JB*-triple. JB*-triples were introduced by Kaup in [58] (although they had previously

been discussed under the name C*-triples in [57]). It follows from the Gelfand-

Naimark Theorem for JB*-triples ([45]) that, for all a, b and c in A,

‖{a b c}‖ ≤ ‖a‖‖b‖‖c‖.
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JB*-algebras are JB*-triples with the natural triple product. In particular C*-

algebras are JB*-triples.

Let A be a JB*-triple. A linear functional x on A is said to be a character of A,

if it is a non-zero triple homomorphism from A to C. The set ∆(A) of characters of

A, equipped with the w*-topology, is said to be the character space of A.

Theorem 2.12 is essential to the theory of JB*-triples.

Theorem 2.12 Let A be a JB*-triple with triple character space ∆(A). For an

element a of A, let A(a) be the smallest JB*-subtriple of A containing a, let σ(a) be

the set

σ(a) = {x(a) : x ∈ ∆(A)} ∩ R+

with the locally compact topology induced from C and let C0(σ(a)) be the commutative

C*-algebra of continuous complex-valued functions vanishing at infinity on σ(a). Then

there exists an isometric triple isomorphism φ : A(a) 7→ C0(σ(a)) mapping a to the

positive generating function ι : λ 7→ λ of C0(σ(a)).

For each element a of the JB*-triple A, the space σ(a) defined in Theorem 2.12

is said to be the spectrum of a in A. The inverse of φ, taking f in Cb(σ(a)) to an

element f(a) of A(a) is said to be the functional calculus of a.

The triple product and the norm of a JB*-triple are intimately connected, as

witnessed by Theorem 2.13 ([58], Section 5).

Theorem 2.13 Let A and B be JB*-triples and let Φ : A 7→ B be a linear surjection.

Then Φ is an isometry if and only if Φ is a triple isomorphism.

2.2.3 JBW*-triples

A JB*-triple which is the dual of a complex Banach space is said to be a JBW*-triple.

Let A be a JBW*-triple with predual A∗. The elements of A∗ are said to be normal

functionals. Fundamental to the theory of JBW*-triples is Theorem 2.14, proved in

[9], Theorem 2.1.
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Theorem 2.14 Let A be a JBW*-triple. Then the predual is unique up to isometric

isomorphism and the triple product is separately w*-continuous.

Corollary 2.15 Let A be a JBW*-triple with predual A∗, let u be a tripotent in A and

let {Pj(u) : j = 0, 1, 2} be the Peirce projections associated with u, with corresponding

Peirce spaces {Aj(u) : j = 0, 1, 2}. Then the Peirce projections are w*-continuous

and the adjoints of unique idempotents {Pj(u)∗ : j = 0, 1, 2} on A∗. For j equal

to 0, 1, 2, the Peirce space Aj(u) is a JBW*-triple, and the predual Aj(u)∗ may be

considered as a subspace of A∗ via the identification:

Aj(u)∗ ∼= Pj(u)∗A∗ = {y ∈ A∗ : y = Pj(u)∗y}.

In particular, A2(u) is a JBW*-algebra under the multiplication and involution defined

in Theorem 2.3.

Related to Theorem 2.14 is Theorem 2.16, proved in [23], Corollary 11.

Theorem 2.16 The second dual of a JB*-triple is a JBW*-triple.

The next theorem, [44], Proposition 2 is critical to the study and classification of

normal functionals on JBW*-triples, and hence to functionals on JB*-triples.

Theorem 2.17 Let A be a JBW*-triple and let x be an element of A∗. Then there

exists a unique tripotent e(x) in A with Peirce-2 projection P2(e(x)) and Peirce-2 space

A2(e(x)) such that x agrees with P2(e(x))∗x, and the restriction of x to A2(e(x)) is a

faithful normal positive functional on A2(e(x)).

The tripotent e(x) defined in Theorem 2.17 is said to be the support tripotent for

x. Corollary 2.18, the well-known polar decomposition theorem for normal functionals

of a W*-algebra, is deduced from Theorem 2.17 in [46], Theorem 2.12.

Corollary 2.18 Let A be a W*-algebra and let x be a normal functional on A. Then

there exists a unique pair (|x|, e(x)) where |x| is a positive normal functional such
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that x and |x| have the same norm, for all elements a in A,

|x|(a) = x(e(x)a)

and e(x)∗e(x) is the support of |x|.

The positive normal functional |x| defined in Corollary 2.18 is said to be the

absolute value of x. When x is positive, x and |x| agree and e(x) is the support

projection.

Let A be a JBW*-triple with predual A∗ and let ∂eA∗,1 be the set of extreme

points of A∗,1, the unit ball of A∗. The elements of ∂eA∗,1 are said to be the pure

normal functionals of A. Let A be a JB*-triple with dual A∗ and bi-dual A∗∗ and let

∂eA
∗
1 be the set of extreme points of the dual unit ball A∗1. The elements of ∂eA

∗
1 are

said to be the pure functionals of A. Clearly the set of pure functionals of A coincides

with the set of normal pure functionals of A∗∗. Pure functionals are fundamental to

investigating the structure of JB*-triples (see, for example, [44], [45] and [20]). Their

importance will become apparent in subsequent chapters.

Theorem 2.19 is another crucial result from [44].

Theorem 2.19 Let A be a JBW*-triple, let ∂eA∗,1 be the set of pure normal func-

tionals of A, and for x in ∂eA∗,1, let e(x) be the support tripotent of x. Then, the

map x 7→ e(x) is a bijection from ∂eA∗,1 onto the set of minimal tripotents of A.

A JBW*-triple containing no non-trivial proper w*-closed ideals and a minimal

tripotent is said to be a Cartan factor.

Theorem 2.20 is the main result of [33].

Theorem 2.20 Let A be a JBW*-triple, let U(A) be the partially ordered set of

tripotents of A and let A∗,1 be the unit ball of the predual of A. For u in U(A), define

{u}′ = {x ∈ A∗,1 : x(a) = 1}.

Then the map u 7→ {u}′ is an order isomorphism from U(A) onto the set of proper

norm-closed faces of A∗,1, partially ordered by set inclusion.
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Theorem 2.21 can be found in [44] and [33].

Theorem 2.21 Let A be a JBW*-triple and let a be an element of unit norm in A.

Let W (a) be the JBW*-subtriple of A generated by a. Then there exists a unique

tripotent r(a) in W (a), with Peirce 2-space A2(r(a)) such that a lies in A2(r(a))+
1 ,

the positive part of the unit ball in A. Furthermore, the JBW*-subalgebra of A2(r(a))

generated by a has unit r(a) and coincides with W (a) as a JB*-triple.

For an element a of a JBW*-triple A, the tripotent r(a) defined by Theorem 2.21

is said to be the support tripotent of a in A. The following result may be found in

[20], Section 2.

Proposition 2.22 Let A be a JB*-triple, let a be an element of A, let r(a) be the

support tripotent of a in A∗∗ and let A∗∗2 (r(a)) be the Peirce-2 space of r(a) in A∗∗.

Let In(a) be the smallest norm-closed inner ideal of A containing a, and let In(a)∗∗

be its bi-dual. Then,

In(a) = {aAa}
n
,

In(a) is a JB*-subalgebra of A∗∗2 (r(a)), containing a as a positive element and

In(a)∗∗ ∼= A∗∗2 (r(a)).
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Chapter 3

Lattice theory and M-structure

As in any algebraic structure, the properties of the set of ideals of a Jordan*-triple are

of fundamental importance. Because of the interplay between topology and algebraic

structure, the complete lattice of norm-closed ideals of a JB*-triple and the Boolean

algebra of w*-closed ideals of a JBW*-triple demand particular attention. Indeed,

closed ideals can be characterised among the subspaces purely in terms of the norm,

a fact which leads us to the investigation of M-ideals and M-summands in a general

Banach space. Topological spaces of norm-closed ideals will play a central role in

Chapter 5 and Chapter 6, as base spaces over which JB*-triples may be represented

as cross-sections. Norm-closed ideals satisfying certain lattice theoretic properties

and their relation to certain spaces of functionals will be studied in Chapter 7.

Many of the concepts and results required for the subsequent investigation of JB*-

triples and their ideals rely on purely Banach space or order theoretic considerations.

In this chapter such concepts will be reviewed in the general setting. In Chapter 4

the discussion will continue by specialising to JB*-triples in order to obtain further

results which require the additional structure afforded by the algebraic and geometric

properties of JB*-triples.

In Section 3.1, basic definitions and results from the M-structure of Banach spaces

are recalled. With the complete lattice of M-ideals of a Banach space as a motiva-

tional example, lattice theoretic concepts fundamental to the thesis are introduced

in Section 3.2. In Section 3.3, the set of pure functionals and Banach space spectra
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are introduced. It is shown that the primitive spectrum is an example of a primitive

subset of the complete lattice of M-ideals of a Banach space, allowing the lattice

theory developed in Section 3.2 to be applied to Banach spaces. The discussion of

M-structure in arbitrary Banach spaces is concluded in section 3.4 with an alternative

description of Banach space spectra in terms of factor representations.

3.1 Summands and M-ideals

In this section some definitions and results from the M-structure theory of Banach

spaces are recalled. For details, the reader is referred to [1], [2], [13] and [52]. Let

A be a Banach space. A closed subspace J of A is said to be an M-summand if

there exists a closed subspace J⊥ such that every element a of A possesses a unique

decomposition

a = b+ b⊥

with b in J and b⊥ in J⊥, satisfying the condition

‖a‖ = max{‖b‖, ‖b⊥‖}.

A closed subspace J of A is said to be an L-summand if there exists a closed subspace

J⊥ such that every element a of A possesses a unique decomposition

a = b+ b⊥

with b in J and b⊥ in J⊥, satisfying the norm condition

‖a‖ = ‖b‖+ ‖b⊥‖.

If J is an M-summand or L-summand of A then the uniquely determined subspace J⊥

is said to be the complement to J and is respectively an M-summand or L-summand

of A. The complementary spaces A and {0} are said to be the trivial M-summands

and L-summands.
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A projection P in the algebra B(A) of bounded linear operators on A is said to

be an M-projection if, for all elements a in A,

‖a‖ = max{‖Pa‖, ‖(I − P )a‖}

and is said to be an L-projection if, for all elements a in A,

‖a‖ = ‖Pa‖+ ‖(I − P )a‖.

Theorem 3.1 Let A be a Banach space and let PM(A) and PL(A) respectively de-

note the sets of M-projections, L-projections on A. Then, for P and Q in PM(A),

respectively, P and Q in PL(A), a partial order and complementation are defined on

PM(A), respectively PL(A), by:

P ≤ Q⇔ PQ = P ;

P⊥ = I − P.

With respect to this ordering, PM(A) is a lattice and PL(A) is a complete lattice, with

the meet and join operations satisfing the equations:

P ∧Q = PQ;

P ∨Q = P +Q− PQ.

With respect to these operations, PM(A) is a Boolean algebra and PL(A) is a complete

Boolean algebra.

A close relationship between M-projections and M-summands and L-projections and

L-summands is established in Corollary 3.2. The result is an amalgamation of [13],

Lemma 1.4, [13], Corollary 1.8 and [13], 1.10.

Corollary 3.2 Let A be a Banach space and let J and K be respectively M-summands

or L-summands of A. Then a partial order and complementation are defined on the
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set of M-summands of A, respectively L-summands of A, by:

J ≤ K ⇔ J ⊆ K;

J 7→ J⊥.

With respect to this ordering, the set of M-summands of A forms a lattice and the

set of L-summands of A forms a complete lattice, with the meet and join operators

satisfing the equations:

J ∧K = J ∩K;

J ∨K = J +K.

With respect to these operations, the set of M-summands of A and the set of L-

summands of A form Boolean algebras. The Boolean algebra of L-summands is com-

plete, and, for any collection {Lλ : λ ∈ Λ} of L-summands,

∧
{Lλ : λ ∈ Λ} =

⋂
{Lλ : λ ∈ Λ},∨

{Lλ : λ ∈ Λ} = lin{Lλ : λ ∈ Λ}
n
.

The map P 7→ rangeP is an ortho-order isomorphism from PM(A) onto the Boolean

algebra of M-summands and from PL(A) onto the complete Boolean algebra of L-

summands, and the mapping P 7→ kerP is an anti-order isomorphism from PM(A)

onto the Boolean algebra of M-summands and from PL(A) onto the complete Boolean

algebra of L-summands such that

rangeP = (kerP )⊥, rangeP⊥ = kerP.

For a general Banach space, the Boolean algebras of M-projections and M-summands

may not be complete ([13], Theorem 1.10).

M-ideals are defined and studied using the theory of topological annihilators,

recalled in Lemma 3.3 ([65], Theorem 4.9). The existence of an isometric isomorphism
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between two Banach spaces E and F will be denoted E ∼= F .

Lemma 3.3 Let A be a Banach space, with dual A∗ and bidual A∗∗, let ι : A 7→ A∗∗

be the canonical embedding, let M be a subspace of A, and let L be a subspace of A∗.

Define the set M◦ of A∗ by

M◦ = {x ∈ A∗ : x|M = 0},

and the set L◦ of A by

L◦ = {a ∈ A : ι(a)|L = 0}.

Then M◦ is a w*-closed subspace of A∗, L◦ is a norm-closed subspace of A, and

(M◦)◦ = M
n
, (L◦)

◦ = L
w∗
, ι(M)◦ = M◦.

When M is a norm-closed subspace of A,

M∗ ∼=
A∗

M◦ ,

(
A

M

)∗
∼= M◦.

and

ι(M)
w∗

= M◦◦ ∼=
(
A∗

M◦

)∗
∼= M∗∗.

In the situation described in Lemma 3.3, M◦ and L◦ are said to be the topological

annihilators of M in the weak topology and L in the w*-topology respectively.

A subspace J of A is said to be an M-ideal if J◦ is an L-summand. The spaces A

and {0} are said to be the trivial M-ideals.

Theorem 3.4 Let A be a Banach space. The set of M-ideals forms a complete lattice

when ordered by set inclusion. For a finite collection of M-ideals J1, . . . , Jn,

n∧
j=1

Jj =
n⋂
j=1

Jj.
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For an arbitrary collection {Jλ : λ ∈ Λ} of M-ideals,

∨
{Jλ : λ ∈ Λ} = lin{Jλ : λ ∈ Λ}

n
.

Note that the meet of a non-finite collection of M-ideals of a Banach space may be

strictly contained in the intersection of the collection.

Proposition 3.5 Let A be a Banach space with dual A∗, let PM(A) be the Boolean al-

gebra of M-projections of A, let PL(A) be the complete Boolean algebra of L-projections

of A, let PM(A∗) be the Boolean algebra of M-projections of A∗ and let Pw∗
L (A∗) be

the set of w*-continuous L-projections ordered by set inclusion. Then:

(i) every element of PM(A∗) is w*-continuous;

(ii) the set of M-summands of A∗ and the set of w*-closed M-ideals of A∗ coincide;

(iii) PM(A∗) is a complete Boolean algebra;

(iv) the map P 7→ P ∗ is an order isomorphism from PL(A) onto PM(A∗) and from

PM(A) onto Pw∗
L (A∗) ;

(v) the map J 7→ J◦ is an anti-order isomorphism from the Boolean algebra of

L-summands on A onto the Boolean algebra of M-summands on A∗ and from

the Boolean algebra of M-summands on A into the complete lattice of w*-closed

L-summands on A∗ such that

(rangeP )◦ = (rangeP ∗)⊥, (rangeP⊥)◦ = rangeP ∗;

(vi) the map J 7→ J◦ is an anti-order isomorphism from the complete lattice of

M-ideals of A onto the complete lattice of w*-closed L-summands of A∗.

Lemma 3.6 can be found in [13], Proposition 1.18, Proposition 2.9.

Lemma 3.6 Let A be a Banach space and let J be respectively an M-summand, L-

summand, M-ideal of A. Then, the following results hold.
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(i) A subspace K of J is an M-summand, L-summand, M-ideal respectively of J

if and only if it is an M-summand, L-summand, M-ideal respectively of A con-

tained in J .

(ii) A subspace K of A/J is an M-summand, L-summand, M-ideal respectively of

of A/J if and only if it is the image of an M-summand, L-summand, M-ideal

respectively of A under the quotient map.

When J is an M-summand or an L-summand with complement J⊥,

J⊥ ∼= A/J.

Lemma 3.7 reveals the useful fact that both the topological annihilator of an M-ideal

or L-summand and its complement can be considered as dual spaces in a natural way.

Lemma 3.7 Let A be a Banach space with dual A∗, and let J be an M-ideal or an

L-summand of A with topological annihilator J◦. Then the complementary summands

J◦ and (J◦)⊥ of A∗ have the natural identifications,

J◦ ∼= (A/J)∗, (J◦)⊥ ∼= A∗/J◦ ∼= J∗.

under which, the w*-topology of (A/J)∗ coincides with the relative w*-topology of A∗

on J◦ and the w*-topology of J∗ is weaker than the relative w*-topology of A∗ on

(J◦)⊥. When J is an M-ideal,

(J◦)⊥ = {x ∈ A∗ : ‖x‖ = ‖x|J‖}.

Finally, Lemma 3.8 shows that the set of extreme points of the unit ball in a Banach

space decomposes over M-structure.

Lemma 3.8 Let A be a Banach space with dual A∗, let L and L⊥ be complementary

L-summands of A, and let ∂eA1, ∂eL1 and ∂eL
⊥
1 be the set of extreme points of the

unit ball of A, L and L⊥ respectively. Let J1 and J2 be M-ideals of A with topological
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annihilators J◦1 , J◦2 respectively. Then ∂eA1 has the decomposition into disjoint sets

∂eA1 = ∂eL1 ∪ ∂eL⊥1 ,

∂eL1 is the set ∂eA1 ∩ L and

(J1 ∩ J2)◦ ∩ ∂eA∗1 = (J◦1 ∩ ∂eA∗1) ∪ (J◦2 ∩ ∂eA∗1). (3.1.1)

3.2 Lattices

Let A be a Banach space, let ZIn(A) denote the complete lattice of M-ideals of A, and

let ZI(A) be the Boolean algebra of M-summands of A. Various subsets of ZIn(A)

will play an important role in the sequel, particularly in the search for a base-space

for JB*-triples. These subsets will be equipped with topologies defined in terms of the

lattice structure, and the ideals contained in these subsets will satisfy certain lattice

theoretic properties. For clarity, these topologies and properties are introduced in a

purely lattice theoretic setting. The reader is referred to [47] for a detailed account

of the lattice theory involved.

Let L be a lattice with least element 0 and let P be an element of L. The element

P is said to be prime if whenever J and K are elements of L such that J ∧K ≤ P ,

then J ≤ P or K ≤ P . The element P is said to be primal if for any elements

J1, . . . , Jn in L such that J1 ∧ . . . ∧ Jn is equal to 0, there exists an element j in

1, . . . , n such that Jj ≤ P . Let PrimeL and PrimalL respectively denote the sets of

prime and primal elements of L. By an inductive argument, it can be seen that every

prime element is primal.

Lemma 3.9 Let L be a Boolean algebra and let P be an element of L. Then the

following are equivalent:

(i) P is prime;

(ii) P is primal;
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(iii) P is maximal or 1;

(iv) P⊥ is minimal or 0.

Proof. (i)⇒(ii) This is true for all complete lattices.

(ii)⇒(iii) Let P be primal and let K in L be such that P ≤ K. Then K ∧K⊥ is

zero, and either K ≤ P , in which case K and P coincide, or K⊥ ≤ P , in which case

K⊥ ≤ K and K is 1. Thus P is maximal or 1.

(iii)⇒(iv) This is obvious.

(iv)⇒(i) If P⊥ is 0 then P is 1 and hence prime. Let P⊥ be minimal and let J

and K be elements of L such that J ∧K ≤ P . Assume that P⊥ ≤ J and P⊥ ≤ K.

Then P⊥ ≤ P which implies that P⊥ is 0, a contradiction. Without loss of generality,

assume that P⊥ 6≤ J . Then P⊥ ∧ J 6= P⊥ and therefore P⊥ ∧ J is 0. This implies

that J ≤ P and therefore P is prime.

For a subset S of the lattice L and for an element J in L, write

↓ S = {K ∈ L : K ≤ L for some L ∈ S}, ↓ J =↓ {J},

↑ S = {K ∈ L : K ≥ L for some L ∈ S}, ↑ J =↑ {J}.

We say S is lower if it coincides with ↓ S and upper if it coincides with ↑ S.

For every finite subset F of L, define

U(F) = {K ∈ L : J � K ∀J ∈ F},

U(J) = U({J}) = L\ ↑ J.

The lower topology W of L is the topology generated by the sub-basis

{U(J) : J ∈ L}.

The set

{U(F) : F ⊆ L, F finite}
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forms a basis for W. Observe that every W-open set is lower and, for any element J

in L,

{J}
W

= {K ∈ L : J ≤ K} =↑ J.

When L is a complete lattice, for any subset S of L,

⋃
J∈S

U(J) = U(∨S). (3.2.1)

Let L be a complete lattice and let S be the family of upper subsets U of L such

that for all directed subsets D of L for which supD lies in U it follows that D ∩ U is

non-empty. Then S forms a topology for L, known as the Scott topology . A subset

U of L lies in S if and only if it is upper, and, for any subset S of L such that ∨S is

an element of U , there exists a finite subset F of S such that ∨F is an element of U .

For any element J in L,

{J}
S

= {K ∈ L : J ≥ K} =↓ J.

The third topology for the complete lattice L introduced in this section is the

Lawson topology L, which is defined to be the intersection of the lower and Scott

topologies.

The lower topology W has a particularly simple form on subsets of PrimeL. Let

T be a subset of PrimeL, let WT denote the relative topology induced on T by W

and, for J in L, define

UT (J) = U(J) ∩ T = {P ∈ T : J � P}.

For any finite subset F of L, the equation

⋂
J∈F

UT (J) = UT (∧F).

supplements equation (3.2.1). Thus, WT is exactly the set of subsets of T of the form
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UT (J) for some element J in L. Denote by hullT J the set of WT -closed complements

hullT J = {P ∈ T : J ≤ P} = T \U(J).

Let L be a complete lattice. Then, a subset T of L is said to order generate L if

L = {∧S : S ⊆ T }.

A subset T of PrimeL is said to be primitive if it order generates L. The motivating

example for this definition is the primitive spectrum of a Banach space, which will

be introduced in Section 3.3.

Proposition 3.10 Let L be a complete lattice, let T be a primitive subset of L and

let WT be the relativised lower topology of T . Then, the mapping J 7→ hullT J is an

anti order-isomorphism from L onto the set of WT -closed subsets of T , with inverse

C 7→ ∧C and, for each subset S of T with WT -closure SWT
,

SWT
= hullT ∧S.

Proof. Clearly, the mapping J 7→ hullT J is surjective. Let J be an element of L.

Since T is order generating, J is of the form ∧S for some subset S of T , and S is a

subset of hullT J . Thus,

∧
hullT J ≤ ∧S = J ≤

∧
hullT J,

and the mapping C 7→ ∧C is an inverse for the mapping J 7→ hullT J . Clearly both

maps are order reversing. Let C be a WT closed subset of T containing S. Then ∧S

dominates ∧C and

S ⊆ hullT ∧S ⊆ hullT ∧C = C.

The result follows.
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Theorem 3.11 Let L be a complete lattice, let T be a primitive subset of L, and let

W be the lower topology on L. Then,

PrimalL = PrimeLW
= T

W
.

Proof. The result follows by the argument of [53], Theorem 6.9.

Proposition 3.12 Let L be a complete lattice, and let T be a primitive subset of L.

Then, for each element J in L, the following are equivalent:

(i) J is primal;

(ii) if J1, . . . , Jn are elements of L such that, for j = 1, . . . , n, Jj � J then
∧n
j=1 Jj

is non-zero;

(iii) if U1, . . . , Un are WT -open subsets of T which intersect hullT J then
⋂n
j=1 Uj is

non-empty;

(iv) there is a net (Pλ)λ∈Λ in T that is W-convergent to every point of hullT J .

Proof. The proof can be found in [6], Proposition 3.2.

It will be shown in Chapter 5 that if a JB*-triple possesses a base space of primal

ideals with the properties required for a Gelfand representation to exist then the

base space is the space of minimal primal ideals with the lower topology, and that

this space may be constructed from the primitive spectrum by means of a process

known as complete regularisation. The remainder of this section develops the lattice

theoretic part of that theory.

A topological space Y is said to be completely regular if it is Hausdorff, and, for

every closed subset C and every element P in Y \C, there exists a continuous function

f such that f is equal to zero on C and to 1 at P [48].

Proposition 3.13 Let (X, τ) be a topological space, let Cb(X) be the space of bounded

continuous complex-valued functions on X and let ≈ be the equivalence relation on
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X defined, for elements P and Q of X, by P ≈ Q if and only if, for every element

f in Cb(X), f(P ) coincides with f(Q). For each element P in X, let [P ] denote the

equivalence class of P , let γX denote the set of equivalence classes, let γ : X 7→ γX

be the natural quotient map, and for each element f of Cb(X), define the function

[f ] on γX by [f ]([P ]) = f(P ). Let Q be the quotient topology induced on γX by

γ and let CR be the weakest topology for which for all elements f of Cb(X), [f ] is

continuous. Then CR is a completely regular topology on γX, weaker than Q, with

equality holding when X is compact. The map f 7→ [f ] is an isometric *-isomorphism

from Cb(X) onto Cb(γX), the space of bounded continuous complex-valued functions

on γX.

For any topological space X, the construction (γ, γX) of Proposition 3.13 is said

to be the complete regularisation of X.

Proposition 3.14 Let X be a topological space with complete regularisation (γ, γX)

and let π be a continuous mapping of X into a completely regular space Y . Then

there exists a continuous map π′ : γX 7→ Y such that

π = π′ ◦ γ.

For more information about complete regularisation, see [48], [76].

Proposition 3.15 Let L be a complete lattice possessing a primitive subset T , let

PrimalL be the set of primal elements of L, let MinPrimalL be the set of minimal

elements of PrimalL, let (γ, γT ) be the complete regularisation of T with respect to

the lower topology W, let the quotient topology on γT be denoted by Q and let Ω(L)

be the image of γT in L under the map p : S 7→ ∧S. Then the following results hold.

(i) γ is W to Q open if and only if p is Q to W continuous.

(ii) The set Ω(L) is a subset of PrimalL if and only if Ω(L) and MinPrimalL

coincide as sets. When either condition holds, p is a Q to W open map.
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Proof. (i) Let J be an element of L and let U(J) be the subset

U(J) = {K ∈ L : J ( K}.

Let P in T be such that γ(P ) lies in p−1(U(J)∩Ω(L)). Then, there exists an element

Q in γ(P ) such that Q lies in U(J) ∩ T . Then γ(P ) coincides with γ(Q) and lies in

γ(U(J) ∩ T ). Thus

p−1(U(J) ∩ Ω(L)) ⊆ γ(U(J) ∩ T ).

Conversely, let P lie in U(J)∩T . Then pγ(P ) is dominated by P , and, hence, pγ(P )

cannot dominate J . Therefore, γ(P ) lies in p−1(U(J) ∩ Ω(L)). This implies that,

p−1(U(J) ∩ Ω(L)) ⊇ γ(U(J) ∩ T ).

Since the sets U(J) form a sub-basis for the lower topology on L, the result follows.

(ii) This follows by the argument of [7], Lemma 3.1.

Lemma 3.16 Let L be a complete lattice, let PrimalL be the set of primal elements

of L and let MinPrimalL be the set of minimal primal elements of L. Then every

element of PrimalL contains an element of MinPrimalL.

Proof. Let C be a totally ordered subset of PrimalL. Assume that ∧C is not primal.

Then, there exist elements J1, . . . , Jn in L such that ∧nj=1Jj is zero but for j equal to

1, . . . , n, Jj � ∧C. Then, for j equal to 1, . . . , n, there exists an element Ij in C such

that Jj � Ij. Then ∧nj=1Ij is an element of the subset {I1, . . . , In} of C, but is not

primal, thereby yielding a contradiction. Using Zorn’s lemma, the result now follows.

In the sequel, when the lattice of norm-closed ideals of a JB*-triple is considered,

the primitive spectrum will always be the primitive subset used. The following result,

shows that, for a complete lattice L possessing a primitive subset T , the topological

space Ω(L) does not depend on the choice of primitive subset T , and may, in fact,
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be identified with the complete regularisation of the set Primal′ L of proper primal

elements of L.

Theorem 3.17 Let L be a complete lattice possessing a primitive subset T , let

Primal′L be the set of proper primal elements of L, let Primal′L and T be equipped

with the relativised lower topology and let (γ1, γ1Primal′L) and (γ2, γ2T ) be the com-

plete regularisations of Primal′L and T respectively. Then, the map φ̃, defined for

I in Primal′L by φ̃ : γ1(I) 7→ γ1(I) ∩ T is a homeomorphism from γ1Primal′L onto

γ2T with inverse defined for P in T by ψ̃ : γ2(P ) 7→ γ1(P ). Let Ω be the subset of L

defined by

Ω = {∧γ1(I) : I ∈ Primal′L}.

Then, for each element I in Primal′L, ∧γ1(I) is the unique element of Ω contained

in I. For G in Ω, let hullPrimal′LG denote the set of proper primal elements of L

containing G. Then, the map γ1(I) 7→ ∧γ1(I) is a bijection from γ1Primal′L onto Ω

with inverse G 7→ hullPrimal′LG, such that

∧γ1(I) = ∧(γ1(I) ∩ T )

The set Ω is a subset of Primal′L if and only if Ω and MinPrimalL coincide as sets.

Proof. Let I be an element of Primal′L. For any element Q in hullT I, it follows

from Proposition 3.12 that hullT I is a subset of γ2(Q), and, hence, the mapping φ

defined for I in PrimalL by φ(I) = γ2(Q) is well defined and onto γ2T . Let g be an

element of Cb(T ), the continuous bounded functions on T . As in [4], Proposition 3.8,

gφ lies in Cb(Primal′L), the space of continuous complex-valued bounded functions

on Primal′L. The continuity of φ now follows from the fact that the kernels of the

continuous complex-valued bounded functions on a completely regular space form a

basis for that topology. Let ψ be the restriction of γ1 to T . Let φ̃ : γ1Primal′L 7→ γ2T

and ψ̃ : γ2T 7→ γ1Primal′L be the continuous liftings of φ and ψ respectively. For an

element P in T ,

φ̃ψ̃(γ2(P )) = φ̃(γ1(P )) = φ(P ) = γ2(P ),
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since P lies in hullT P . Therefore φ̃ψ̃ is the identity on γ2T . Let I be an element of

Primal′L and let Q be an element of hullT I. Then,

ψ̃φ̃(γ1(I)) = ψ̃(φ(I)) = ψ̃(γ2(Q)) = φ(Q) = γ1(Q).

By Proposition 3.12, there exists a net in T W-convergent to every point of hullT I.

By [4], Proposition 3.2, this net converges to Q and I in Primal′L. Hence γ1(Q) and

γ1(I) coincide and ψ̃φ̃ is the identity on γ1Primal′L. The homeomorphism φ̃ induces

an isometric *-isomorphism f 7→ f |T from Cb(Primal′L) onto Cb(T ). Therefore, for

elements P and Q in T , γ1(P ) and γ1(Q) coincide if and only if γ2(P ) and γ2(Q)

coincide. Thus, for I in Primal′L and Q in hullT I,

φ(I) = γ2(Q) = γ1(Q) ∩ T = γ1(I) ∩ T .

Let Ω be the set

Ω = {∧φ(I) : I ∈ Primal′L}.

Then, for I in Primal′L, the element ∧φ(I) of Ω can be written in the form ∧γ2(P ),

where P is any element of hullT I. Since hullT I is a subset of γ2(P ), it follows that

∧φ(I) is an element of Ω contained in I. Let the element Q in T be such that

γ2(Q) is another element of Ω contained in I and, hence, contained in P . Then, P

lies in hullT ∧γ2(Q), and, hence, γ2(P ) and γ2(Q) coincide. Thus, every element I

in Primal′L contains exactly one element ∧φ(I) of Ω. Also observe that if J lies

in hullPrimal′L ∧φ(I) then ∧φ(J) and ∧φ(I) coincide, and are the unique element of

Ω contained in J . Conversely, if ∧φ(J) and ∧φ(I) coincide, then since ∧φ(J) is

contained in J , so also is ∧φ(I). It follows that J is an element of hullPrimal′L ∧φ(I)

if and only if ∧φ(J) and ∧φ(I) coincide, which occurs if and only if γ1(I) and γ1(J)

coincide. Thus

hullPrimal′L ∧φ(I) = γ1(I) ⊇ γ1(I) ∩ T = φ(I).

It follows that

∧φ(I) ≤ ∧γ1(I) ≤ ∧φ(I),
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and the proof that

∧γ1(I) = ∧(γ1(I) ∩ T )

is complete.

Suppose that Ω is a subset of Primal′L, and let I be a minimal element of Primal′L.

Then, ∧φ(I) is a primal element contained in I, and, hence, equal to I by the mini-

mality of I. Conversely, let I be primal and let J be a primal element dominated by

∧φ(I). Then

∧φ(J) ≤ J ≤ ∧φ(I) ≤ I.

Since I contains exactly one element of Ω, J and ∧φ(I) coincide. Thus ∧φ(I) is

a minimal primal ideal and the sets Ω and MinPrimalL coincide. The converse

implication is obvious.

Let L be a complete lattice. For elements J , K of L, J is said to be way below

K, written J � K if and only if, whenever D is a directed subset of L such that

K ≤ ∨D, there exists an element I in D such that J ≤ I. For elements I, J , K and

L of L,

(i) J � K implies J ≤ K;

(ii) I ≤ J � K ≤ L implies I � L;

(iii) J � L and K � L implies J ∨K � L;

(iv) 0� J .

For a subset S of L, write

⇓ S = {K ∈ L : K � J for some J ∈ S}, ⇓ J =⇓ {J},

⇑ S = {K ∈ L : K � J for some J ∈ S}, ⇑ J =⇑ {J}.

A complete lattice L is said to be continuous if it satisfies the axiom of approxi-
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mation that, for each element J in L,

J = ∨{I ∈ L : I � J}.

It follows from [53], Theorem 4.9 that a continuous lattice is a compact Hausdorff

space in the Lawson topology.

Proposition 3.18 Let L be a continuous lattice possessing a primitive subset T , let

1 be the maximal element of L, let PrimalL be the set of primal ideals, let Primal′ L

be the set of proper primal ideals, let W be the lower topology and let L be the Lawson

topology. Then, PrimalL is L-compact and the following conditions are equivalent:

(i) Primal′ L is L-compact;

(ii) Primal′ L is W-compact;

(iii) T is W-compact;

(iv) 1 is not an element of Primal′ L
L
;

(v) {1} is L-open in PrimalL.

Proof. By Theorem 3.11, PrimalL is W-closed, and, hence, L-closed. Since L is

continuous, L is L-compact and Hausdorff and hence PrimalL is L-compact.

The implications (i)⇒(ii), (i)⇔(iv)⇔(v) are immediate. That (ii)⇔(iii) can be

seen using the argument of [53], Theorem 7.4. To show that (ii)⇒(iv), let S be the

Scott topology of L. Suppose that (ii) holds and assume that 1 is an element of

Primal′ L
L
, and hence Primal′ L

S
Then, by [53], Theorem 5.2(a), 1 is an element of

Primal′ L, therefore yielding a contradiction.

Proposition 3.19 Let X be a topological space, and let O(X) be the complete lattice

of open sets. Then, the following results hold.
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(i) Let U , V be open sets for which there exists a compact set K such that

U ⊆ K ⊆ V.

Then U � V .

(ii) Let X be locally compact and let U and V be open sets such that U � V . Then,

there exists a compact set K such that

U ⊆ K ⊆ V

and the complete lattice O(X) of open sets is continuous.

Theorem 3.20 Let L be a complete lattice possessing a primitive subset T which is

locally compact in the lower topology. For every compact subset C of T and every

finite subset F of L, define the subset U(C,F) of L by

U(C,F) = {J ∈ L : J � K ∀K ∈ C,K � J ∀K ∈ F}.

Then:

(i) L is a continuous lattice;

(ii) the collection of sets of the form U(∅,F) forms a basis for the lower topology;

(iii) the collection of sets of the form U(C, ∅) forms a basis for the Scott topology;

(iv) the collection of sets of the form U(C,F) forms a basis for the Lawson topology.

Proof. The map J 7→ T \ hullT J is an order isomorphism onto the lower topology

of T . It follows from Proposition 3.19 that (i) holds. Part (ii) is immediate from the

definition. Parts (iii) and (iv) can be found in [47].

When T is as in Theorem 3.20, T L
, the closure of T in the Lawson topology is

said to be the Hausdorff compactification of T [43]. The following lemma, proved in
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[43], shows that T L
has a particularly simple form when T itself is Hausdorff in the

lower topology.

Lemma 3.21 Let L be a complete lattice possessing a primitive subset T which is

locally compact and Hausdorff in the lower topology, and let T L
be the closure of T

in the Lawson topology. When T is compact

T L
= T ,

and, otherwise,

T
L

= T ∪ {1}.

3.3 Banach space spectra

Having established all of the lattice theoretic results that will be required in this thesis

in Section 3.2, some of the tools used to explore the structure of a Banach space are

described in this section, starting with pure functionals and the centralizer.

Let A be a Banach space with dual A∗ and let ∂eA
∗
1 be the set of extreme points

of A∗1, the unit ball of A∗. The elements of ∂eA
∗
1 are said to be the pure functionals

of A.

Proposition 3.22 Let A be a complex Banach space with dual A∗ and let ∂eA
∗
1 be

the set of pure functionals of A. For an operator T in the Banach algebra B(A) of

bounded linear operators on A, let T ∗ be the dual operator on A∗. Let Z(A) be the set

of elements T in B(A) for which there exists an operator T † in B(A) such that, for

every element x in ∂eA
∗
1, there exists λT,x in C, such that,

T ∗x = λT,xx

(T †)∗x = λT,xx.

Then:
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(i) for each element T in Z(A), and x in ∂eA
∗
1, the scalar λT,x is unique and the

function Ť : x 7→ λT,x is w*-continuous on ∂eA
∗
1 and bounded by ‖T‖;

(ii) for each element T in Z(A), T † is unique;

(iii) Z(A) is a commutative closed subalgebra of B(A) and the mapping T 7→ T †

is an involution on Z(A) with respect to which Z(A) is a commutative unital

C*-algebra;

(iv) for each element x in ∂eA
∗
1, the function x̌ : T 7→ λT,x is a character of Z(A).

For a Banach space A, the C*-algebra Z(A) defined in Proposition 3.22 is said to

be the centralizer of A. The Boolean algebra of projections of Z(A) coincides with

the Boolean algebra of M-projections of A, and, when A is a dual space, Z(A) is

the Banach *-subalgebra of B(A) generated by the complete Boolean algebra of M-

projections. Thus, the centralizer is a convenient tool for studying the M-summands

of a Banach space. In Chapter 6, the centralizer will be used to study a class of norm-

closed ideals in a JBW*-triple, and, in Chapter 7, it will be used to characterise the

pure state space of a continuous JBW*-triple.

The centralizer is said to be trivial if it consists of scalar multiples of the identity.

This occurs whenever A has no non-trivial M-ideals. The partial converse is that if

Z(A) is trivial then A has no non-trivial M-summands.

Let A be a Banach space. An M-ideal of A is said to be respectively prime, primal

or maximal if it is prime, primal or maximal as an element of ZIn(A), the lattice of

M-ideals. The set of prime ideals of A is denoted by PrimeA and the set of primal

ideals by PrimalA. However, the subset of ZIn(A) which will be the most useful for

studying the structure of A is the primitive spectrum.

Let L be a norm-closed subspace of A and define the central kernel k(L) of L and

the norm central kernel kn(L) of L by

k(L) =
∨
{I ∈ ZI(A) : I ⊆ L}

kn(L) =
∨
{I ∈ ZIn(A) : I ⊆ L} .
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Since L is a norm-closed subspace, k(L) is the largest M-summand contained in L

and kn(L) is the largest M-ideal contained in L.

Let A be a Banach space with dual space A∗, let A∗1 be the closed unit ball in A∗

and let ∂eA
∗
1 be the set of extreme points of A∗1. For each element x in ∂eA

∗
1, let Lx

be the smallest L-summand of A∗ containing x and let Kx be the smallest w*-closed

L-summand of A∗ containing x. It is clear that Lx is a minimal L-summand of A∗.

The spectrum of A is defined to be the set {Lx : x ∈ ∂eA∗1} and the primitive spectrum

of A ([28]) is defined to be the set {Kx : x ∈ ∂eA∗1}. For x in ∂eA
∗
1, define the central

kernel of x in A∗∗ to be the central kernel k(ker∗ x) of the kernel ker∗ x of x in A∗∗

and define the norm central kernel of x to be the norm central kernel kn(ker∗ x) of the

kernel ker∗ x of x in A. Then the mappings Lx 7→ L◦x and Kx 7→ (Kx)◦ are bijections

from the spectrum and the primitive spectrum onto the sets

SpecA = {k(ker∗ x) : x ∈ ∂eA∗1}

PrimA = {kn(ker∗ x) : x ∈ ∂eA∗1}

respectively. In the sequel, by slight abuse of terminology, SpecA will be said to be

the spectrum of A and PrimA will be said to be the primitive spectrum of A.

It follows from equation (3.1.1) that

PrimA ⊆ PrimeA ⊆ PrimalA.

Given any ideal J , the hull of J is defined by

hull J = hullPrimA J = {P ∈ PrimA : J ⊆ P}.

Proposition 3.23 below shows that PrimA is order generating. Hence, by Theo-

rem 3.11, the closures of PrimA and PrimalA in the lower topologies coincide with

PrimalA. As in Section 3.2, the sets hull J for J in ZIn(A) are the closed sets of the

relative lower topology on PrimA. This topology is known as the Jacobson topology

and is denoted by J.
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Proposition 3.23 Let A be a Banach space with primitive spectrum PrimA and let

J be the Jacobson topology on PrimA. Then, the following results hold.

(i) For each M-ideal J in A, with hull, hull J ,

J =
⋂
{P : P ∈ hull J}.

(ii) For each subset S of PrimA, let S
J

be the closure of S in PrimA in the Jacobson

topology and let kn(∩S) be the norm central kernel of ∩S. Then

S
J

= hull kn(∩S).

Proof. Let K be a w*-closed L-summand of A∗. Since K is w*-closed, K1 is a

w*-compact convex subset of A∗. Let ∂eK1 be the set of extreme points of K1. By

the Krein-Milman theorem,

K1 ⊆ conv ∂eK1
w∗ ⊆ lin{Kx : x ∈ ∂eK1}

w∗
⊆
∨
{Kx : x ∈ ∂eK1} ⊆ K.

Thus

K = lin{Kx : x ∈ ∂eK1}
w∗

=
∨
{Kx : x ∈ ∂eK1}.

Equivalently, for an M-ideal J of A,

J =
∧
{Jx : x ∈ ∂eJ◦1} =

∧
{Jx : x ∈ ∂eA∗1 ∩ J◦} =

∧
{P : P ∈ hull J}.

Thus PrimA order generates ZIn(A) and the result follows from Proposition 3.10.

Lemma 3.24 Let A be a JB*-triple, let ∂eA
∗
1 be the set of pure functionals of A, let

SpecA be the spectrum of A and let PrimA be the primitive spectrum of A, equipped

with the Jacobson topology J. For x in ∂eA
∗
1, let Jx be the central kernel of x in A∗∗,

let Jx be the norm central kernel of x in A and define surjections Θ : ∂eA
∗
1 7→ SpecA,
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Φ : SpecA 7→ PrimA and Ψ : ∂eA
∗
1 7→ PrimA by

Θ(x) = Jx

Φ(Jx) = Jx

Ψ(x) = Φ ◦Θ(x) = Jx.

Let J′ be the quotient topology induced on SpecA from PrimA by Φ and let J′′ be the

quotient topology induced on ∂eA
∗
1 from PrimA by Ψ. Let J be an M-ideal of A, with

hull hull J . Then

Ψ−1(hull J) = J◦ ∩ ∂eA∗1,

J′′ is weaker than the relative w*-topology on ∂eA
∗
1, Ψ is w* to J continuous and Θ is

w* to J′ continuous.

Proof. For each element x of ∂eA
∗
1, let Kx be the smallest w*-closed L-summand of

A∗ containing x and let Lx be the smallest norm-closed L-summand of A∗ containing

x. Let x and y be elements of ∂eA
∗
1 such that Lx and Ly coincide. Then Ly and hence

Ky are subsets of Kx, and by symmetry, Kx and Ky coincide. Thus Φ is well defined.

The subsets of ∂eA
∗
1 closed in the structure topology are of the form

Ψ−1(hull J) = {x ∈ ∂eA∗1 : J ⊆ Jx}

= J◦ ∩ ∂eA∗1.

Since J◦ is w*-closed, it follows that the structure topology is weaker than the w*-

topology on ∂eA
∗
1.

The topologies J′ and J′′ of Lemma 3.24 are said to be the structure topologies of

their respective spaces.

Lemma 3.25 Let A be a JB*-triple and adopt the notation of Lemma 3.24. Let S

be a subset of SpecA and let x be an element of ∂eA
∗
1. Then Jx lies in S

J′

if and only

if ∩J∈SΦ(J) is a subset of Jx.
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Proof. The result follows from the equation

S = Φ−1(Φ(S)
J
).

An early indication of the relevance of the primitive spectrum to questions con-

cerning Banach space structure is given by the following well known theorem, often

referred to as the Dauns-Hofmann theorem. It was proved for C*-algebras in [22], real

Banach spaces in ([2], Section 4) and extended to complex Banach spaces in ([13],

Chapter 3).

Theorem 3.26 Let A be a Banach space with primitive spectrum PrimA equipped

with the Jacobson topology J and let ∂eA
∗
1 be the set of pure functionals of A, equipped

with the structure topology J′′. Then, for each element T of the centralizer Z(A) of

A, there exists a function Ť of the space Cb(∂eA
∗
1) of complex-valued bounded J′′-

continuous functions on ∂eA
∗
1, such that for all elements x of ∂eA

∗
1,

T ∗x = Ť (x)x,

and a function fT in the space Cb(PrimA) of complex-valued bounded J-continuous

functions such that for all elements x of ∂eA
∗
1,

fT (Jx) = Ť (x),

where Jx is the norm central kernel kn(kerx) of x. The mapping T 7→ Ť is a *-

isomorphism from Z(A) onto Cb(∂eA
∗
1) and the mapping Ť 7→ fT is a *-isomorphism

from Cb(∂eA
∗
1) onto Cb(PrimA).
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3.4 Representations

Representations are important in the study of JB*-triples as a means of accessing the

more complete theory of JBW*-triples, and as a way of relating general JB*-triples

to more concrete examples. In this section representation theory for Banach spaces

is introduced.

Let A and M be dual Banach spaces and choose preduals A∗ and M∗. It will

be understood that the w*-topologies on A and M are those induced by the chosen

preduals. Let π : A 7→ M be a w*-continuous linear map such that kerπ is an M-

summand of A and π(A) is a w*-dense in M . The central support of π, written sptπ,

is defined to be (kerπ)⊥, the M-orthogonal complement of ker π. If π is an isometry

on spt π then (π,M) is said to be a w*-representation of A.

Let A be an arbitrary Banach space, let M be a dual Banach space with chosen

predual M∗ and let π : A 7→ M be a bounded linear mapping. Then (π,M) is said

to be a representation of A if the unique w*-continuous extension π̃ : A∗∗ 7→ M is a

w*-representation of A∗∗ (where A∗ is the chosen predual of A∗∗). The support of π,

denoted by spt π, is defined to be equal to spt π̃.

Lemma 3.27 Let A be a dual Banach space and let (π,M) be a w*-representation

of A. Then π(A) is equal to M .

Proof. Since spt π is an M-summand, it is w*-closed and its unit ball sptπ ∩ A1 is

w*-compact. Since π is w*-continuous and an isometry on its support, π(A) ∩M1

coincides with π(spt π1) and is w*-compact. It follows by the Krein-Šmulian theorem

that π(A) is w*-closed.

Corollary 3.28 Let A be an arbitrary Banach space and let (π,M) be a representa-

tion of A with extension π̃ to the bidual A∗∗ of A. Then

M = π̃(A∗∗) = π(A)
w∗
.

Proof. Since A is w*-dense in A∗∗ and π̃ is w*-continuous, π̃(A) is w*-dense in

π̃(A∗∗).
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Two w*-representations (π1,M1) and (π2,M2) of a dual Banach space A are said

to be quasi-equivalent if spt π1 and spt π2 coincide. Clearly this is equivalent to the

existence of a linear isometry ψ from π1(A) onto π2(A) such that ψ ◦ π1 agrees with

π2. The w*-representations are said to be disjoint if spt π1 and spt π2 have zero

intersection. Two representations of an arbitrary Banach space A are said to be

quasi-equivalent or disjoint if their extensions to A∗∗ are quasi-equivalent or disjoint

respectively. A representation is said to be factorial if its support is a factor.

Let J be an M-summand of a dual space A and let PJ be the M-projection with

range J . Then J is w*-closed and therefore a dual space. Hence (PJ , J) is a w*-

representation of A. Clearly every representation (π,M) of A is quasi-equivalent

to (Psptπ, sptπ). Thus the representation theory of a dual space reduces to its M-

summand theory, and the representation theory of an arbitrary space reduces to the

M-summand theory of its second dual.

Let A be a Banach space and let ι : A 7→ A∗∗ be the natural inclusion. For

each element x in A∗, recall that Lx is the smallest L-summand of A∗ containing x.

Associate with each element x in A∗ a representation (πx,Mx) where Mx is the dual

Banach space L∗x and πx is the natural representation of A onto a w*-dense subset of

L∗x. Then,

SpecA = {ker π̃x : x ∈ ∂eA∗1},

and

PrimA = {kerπx : x ∈ ∂eA∗1}.
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Chapter 4

JB*-triple ideals

This chapter continues the discussion of M-structure begun in Chapter 3, but spe-

cialises to the JB*-triple case, where the extra structure leads to a richer theory.

In Section 4.1 the M-structure of a JB*-triple A is connected to its algebraic

structure and some important consequences are recalled. In Section 4.2 an algebraic

expression for the norm central kernel of a norm-closed subspace of a JB*-triple is

found. In Section 4.3, a different approach is adopted to give an alternative description

of the norm central kernel of a functional on a JB*-triple. In Sections 4.4 and 4.5 some

additional topological results for the spectrum and primitive spectrum respectively

are obtained. In Section 4.6 an alternative description of the lower, Scott and Lawson

topologies, introduced in the lattice setting in Section 3.2, is given. Finally, in Section

4.7, more information is obtained about the complete regularisation of the primitive

spectrum and the Dauns-Hofmann theorem in the JB*-triple case.

4.1 JB*-triple ideals

In this section some well known results from the rich theory connecting the M-

structure of a JB*-triple to its algebraic structure are recalled.

The significance of M-structure in JB*-triples and JBW*-triples is explained by

the following result, which follows from [18], Proposition 1.3, [9], Theorem 3.2 and

Proposition 3.5.
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Theorem 4.1 Let A be a JB*-triple and let J be a norm-closed subspace of A. Then

the following are equivalent:

(i) J is an ideal of A;

(ii) {AAJ} ⊆ J ;

(iii) {AJ A} ⊆ J ;

(iv) {AJ J} ⊆ J ;

(v) J is an M-ideal of A.

When A is a JBW*-triple and J is a w*-closed subspace, conditions (i) to (v) are

equivalent to the condition that J is an M-summand of A.

Let J be an element of the complete Boolean algebra ZI(A) of w*-closed ideals

of a JBW*-triple A. Then, an immediate consequence of [34] is that the algebraic

annihilator of J as defined in Section 2.1.3 coincides with the complementary M-

summand of J , justifying the use of the notation J⊥ for both concepts. Let A be a

JB*-triple with complete lattice of norm-closed ideals ZIn(A). Another fundamental

consequence of Theorem 4.1 is that the intersection of any family {Jλ : λ ∈ Λ} in

ZIn(A), is again a norm-closed ideal and

∧
{Jλ : λ ∈ Λ} =

⋂
{Jλ : λ ∈ Λ}.

It follows that, for a norm-closed subspace L of A, the norm central hull cn(L) of L,

defined by

cn(L) =
∧
{I ∈ ZIn(A) : L ⊆ I}

is the smallest M-ideal of A containing L.

When A is a JBW*-triple and L a w*-closed subspace of A, the central hull c(L)

of L is defined by

c(L) =
∧
{I ∈ ZI(A) : L ⊆ I} .
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Thus the central hull is the smallest w*-closed ideal containing L and the central

kernel is the largest w*-closed ideal contained in L. Central hulls and central kernels

in JB*-triples have been the subject of intensive study, see, for example, [20], [36],

[40], [41]. Theorem 4.2 can be found in [40], Lemma 3.12.

Theorem 4.2 Let A be a JBW*-triple and let J be a w*-closed inner ideal of A.

Then

c(J)⊥ = k(J⊥).

It is now possible to give an algebraic characterisation of the representations of a

JB*-triple.

Proposition 4.3 Let A be a JB*-triple, let M be a JBW*-triple and let (π,M) be a

representation of A with extension (π̃,M) to A∗∗. Then, π and π̃ are homomorphisms.

Proof. By definition, π̃ is an isometry on spt π̃, the support of π̃. By Theorem

2.13, π̃ is an isometric isomorphism from spt π̃ onto M . By Theorem 4.1, π̃ is a

homomorphism on A∗∗. The result follows.

By a slight abuse of terminology, if B is a JBW*-triple containing M as a JBW*-

subtriple, the pair (π,B) will be said to be a representation of A.

The bounded linear operators on a JB*-triple which lie in the centralizer can also

be given an algebraic characterisation. Let A be a Jordan *-triple and recall from

Chapter 2, that for a and b in A, a linear operator D(a) is defined by

D(a)b = {a a b}.

The centroid of A is the algebra of linear operators T : A 7→ A which commute

with all operators of the form D(a) for a in A. When A is also a Banach space, the

continuous centroid is defined to be the algebra of bounded elements of the centroid.

The continuous centroid of a JB*-triple A coincides with the centralizer Z(A) of A,

and the involution T 7→ T † on Z(A), defined in Proposition 3.22, satisfies

T{a b c} = {a T †b c}
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for all elements a, b and c in A [24]. Proposition 4.4 ([24], Proposition 3.5) gives a more

familiar algebraic interpretation of the centralizer in the case of a unital JB*-algebra.

Proposition 4.4 Let A be a JB*-algebra with unit 1 and centralizer Z(A). Then the

map T 7→ T1 is an isometric *-isomorphism from Z(A) onto the centre of A.

Theorem 4.5 was proved in [36]. An equivalent result for JB*-triples possessing a

complete tripotent will be given in Corollary 6.5.

Theorem 4.5 Let A be a JBW*-triple with centralizer Z(A) and let J be a w*-

closed inner ideal in A with centralizer Z(J). Let Pc(J) be the M-projection of A onto

the central hull c(J) of J . Then Z(c(J)), the centralizer of c(J) coincides with the

w*-closed ideal Pc(J)Z(A) of Z(A) and the map T 7→ T |J is a *-isomorphism from

Z(c(J)) onto Z(J).

One immediate consequence of Theorem 4.5 is that the set of w*-closed ideals

of a w*-closed inner ideal in a JBW*-triple may be identified with the set of w*-

closed ideals of the central hull. Proposition 4.6 ([20], Lemma 2.4, Proposition 2.5)

shows that this result is partially preserved for norm-closed inner ideals in general

JB*-triples.

Proposition 4.6 Let A be a JB*-triple and let I be a norm-closed inner ideal of A.

Then, the following results hold.

(i) If J is an M-ideal of A, I ∩ J is an M-ideal of I and

I ∩ J = {I J I}

cn(I ∩ J) = cn(I) ∩ J.

(ii) If J is an M-ideal of I then

J = cn(J) ∩ I.
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Theorem 4.7 is a powerful tool in the study of w*-closed inner ideals in JBW*-

triples. It is an amalgamation of results from [32], Section 5.

Theorem 4.7 Let A be a JBW*-triple with predual A∗ and let J be a w*-closed inner

ideal in A. Then there exists a unique structural projection PJ on A such that

J = PJA

and J is the dual of the subspace

J# = (PJ)∗A∗ = {x ∈ A∗ : ‖x‖ = ‖x|J‖} = {x ∈ A∗ : e(x) ∈ J}

of A∗.

It is important to note that the isometric isomorphism of Theorem 4.8 ([9], Propo-

sition 3.4) is not the usual inclusion of a Banach space in its bidual.

Theorem 4.8 Let A be a JBW*-triple with predual A∗, dual A∗ and bidual A∗∗.

Then A∗ is an L-summand of A∗ and A is isometrically isomorphic to a w*-closed

ideal of the JBW*-triple A∗∗.

4.2 Norm central kernels

The main result of this section, Theorem 4.15, is an algebraic characterisation of the

norm central kernel kn(L) of a norm-closed subspace L of a JB*-triple A. The proof

will proceed by investigating various subsets of L. Theorem 4.15 is a good example of

a result which has a very simple proof in the special case of C*-algebras, but appears

only to admit a highly technical proof in the general JB*-triple case. Theorem 4.15

will be used in Chapter 6, but may also be of independent interest.

Throughout this section, for elements a and b in the Jordan *-triple A, recall that

D(a, b) and Q(a, b) denote the linear operators on A defined, for each element c in A,

by

D(a, b)c = {a b c}, Q(a, b)c = {a c b}
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and that D(a) and Q(a) denote the operators D(a, a) and Q(a, a) respectively.

Proposition 4.9 Let A be a JB*-triple, let L be a norm-closed subspace of A and

let K2 be the set

K2 = {a ∈ A : D(b)a ∈ L∀ b ∈ A}.

Then

K2 = {a ∈ A : D(b, c)a ∈ L∀ b, c ∈ A}.

and K2 is a norm-closed inner ideal of A contained in L.

Proof. It is clear that K2 is a norm-closed subspace of A. By polarisation,

K2 = {a ∈ A : D(b, c)a ∈ L∀ b, c ∈ A}.

Let a be an element of K2 and let b and c be elements of A. Then, by Theorem 2.2,

D(b){a c a} = 2{{b b a} c a} − {a {b b c} a}

= 2D({b b a}, c)a−D(a, {b b c})a

and D(b){a c a} lies in L. It follows that {a c a} lies in K2 and K2 is a norm-closed

inner ideal of A. By the functional calculus (see [24], Proposition 1.4) there exists

a sequence (un) in A(a), the JB*-subtriple of A generated by a, such that D(un)a

converges to a. It follows that K2 is a subset of L.

Let A be a JB*-triple, let L be a norm-closed subspace and define a subset K4 of

A by

K4 = {a ∈ A : D(a)b ∈ L∀ b ∈ A}.

It is not obvious a priori that K4 is even a subspace of A. To prove that K4 is in fact

a norm-closed inner ideal of A, it must first be established that for a in K4 and b in

A, {a b a} lies in L. This will be proved by proving an equivalent result for powers of

a and then using the functional calculus. Lemma 4.10 begins the process.

57



Lemma 4.10 Let A be a Jordan *-triple, let L be a subspace of A, let a in A and m

in N be such that D(a, am)b and D(a, a)b lie in L for all b in A. Then, for n in N0,

and all b in A,

D(a, a4n+m)b ∈ L, Q(a, a4n+m+2)b ∈ L.

Proof. In the case when n is equal to zero, by hypothesis, D(a, am)b lies in L for all

b in A. Also,

Q(a, am+2)b = {a b {a am a}}

= {{a b a} am a}

= D(a, am){a b a}

which lies in L by hypothesis.

In the case when n is equal to k, assume that for all b in A,

D(a, a4k+m)b ∈ L, Q(a, a4k+m+2)b ∈ L.

By [62], JP9,

2D(a, a)D(a4k+m+2, a)b = Q(a, a4k+m+2)Q(a)b+D(a, a4(k+1)+m)b

Therefore D(a, a4(k+1)+m)b lies in L. Also,

Q(a, a4(k+1)+m+2)b = {a b {a a4(k+1)+m a}}

= {{a b a} a4(k+1)+m a}

= D(a, a4(k+1)+m){a b a}.

The result now follows by induction.

Lemma 4.11 will be used to extend Lemma 4.10 to all powers, by applying the

functional calculus.
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Lemma 4.11 Let A be a JB*-triple, let L be a norm-closed subspace of A and let

K4 be the set

K4 = {a ∈ A : D(a)b ∈ L∀ b ∈ A}.

Then for a in K4 and b in A, D(a, a3)b lies in L.

Proof. Let A(a) be the JB*-triple generated by a in A. Then, by Theorem 2.12 there

exists a locally compact subset σA(a) of (0,∞) and an isometric triple isomorphism

from A(a) onto C0(σA(a)) such that for j in N, a2j+1 is mapped to ι2j+1. Let B be

the norm-closed *-subalgebra

B = lin{ι4j : j ∈ N}
n
.

of C0(σA(a)). Then, ι4 is non-zero on σA(a) and separates points in σA(a). By

the locally compact Stone-Weierstrass Theorem, B coincides with C0(σA(a)). Given

ε > 0, there exists an element of B of the form Σn
j=1αjι

4j such that

‖Σn
j=1αjι

4j − ι2‖∞ < ε/‖a‖.

Therefore,

‖Σn
j=1αja

4j+1 − a3‖ ≤ ‖ι‖∞‖Σn
j=1αjι

4j − ι2‖∞ < ε.

Therefore a3 lies in the set

lin{ι4j+1 : j ∈ N}
n
.

By Lemma 4.10, D(a, a3)b lies in L.

Corollary 4.12 Let A be a JB*-triple, let L be a norm-closed subspace of A and let

K4 be the set

K4 = {a ∈ A : D(a)b ∈ L∀ b ∈ A}.

Then for a in K4, b in A, and n in N0, D(a, a2n+1)b, Q(a, a2n+3)b and {a b a} lie in

L.
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Proof. By Lemma 4.10 and Lemma 4.11, D(a, a2n+1)b, Q(a, a2n+3)b and lie in L. For

j in N,

(a3)2j+1 = a6j+3 = a2(3j)+3

Therefore, Q(a, c)b lies in L for all c in Aa3 , the JB*-subtriple of A generated by a3.

By [18], Lemma 1.2, a lies in Aa3 and the result follows.

Enough technical results have now been established for the investigation of the

space K4 to proceed.

Proposition 4.13 Let A be a JB*-triple, let L be a norm-closed subspace of A and

define subsets K2 and K4 of A by

K2 = {a ∈ A : D(b)a ∈ L∀ b ∈ A}

K4 = {a ∈ A : D(a)b ∈ L∀ b ∈ A}.

Then K2 and K4 coincide.

Proof. Let a be an element of K2. By polarisation, D(b, c)a lies in L for all b and c

in A. In particular,

D(b, a)a = D(a)b

lies in L for all b in A. Therefore a lies in K4. Conversely, suppose that a lies in K4

and let b be an element of A. Then, using Corollary 4.12,

D(b)a3 = 2{{b b a} a a} − {a {b b a} a}

lies in L. Therefore, a3 lies in K2. By Proposition 4.9, K2 is a norm-closed subtriple

of A. Therefore, by [18], Lemma 1.2, a lies in K2. This completes the proof.

The results obtained for the spaces K2 and K4 can now be applied to the study

of another space, K3, defined in Proposition 4.14.
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Proposition 4.14 Let A be a JB*-triple, let L be a norm-closed subspace of A and

define sets K2, K3 and K4 by

K2 = {a ∈ A : D(b)a ∈ L∀ b ∈ A},

K3 = {a ∈ A : Q(b)a ∈ L∀ b ∈ A},

K4 = {a ∈ A : D(a)b ∈ L∀ b ∈ A}.

Then,

K3 = {a ∈ A : Q(b, c)a ∈ L∀ b, c ∈ A},

K3 ⊆ K2 = K4 ⊆ L

and K3 is a norm-closed ideal of A.

Proof. It is clear that K3 is a norm-closed subspace of A. By polarisation,

K3 = {a ∈ A : Q(b, c)a ∈ L∀ b, c ∈ A}.

In particular,

Q(b, a)a = D(a)b

lies in L for all b in A. Therefore a lies in K4, which coincides with K2 and is a subset

of L by Proposition 4.13 and Proposition 4.9. Let a be an element of K3 and let b, c

be elements of A. Then

Q(b){c a a} = 2{{a c b} a b} − {a c {b a b}}

lies in L. Therefore {c a a} lies in K3 for all c in A and a in K3. It follows by

polarisation that K3 is a norm-closed ideal of A.

It is now possible to prove the main theorem of this section.

Theorem 4.15 Let A be a JB*-triple, let L be a norm-closed subspace of A, let kn(L)
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be the norm central kernel of L and let K3 be the subset

K3 = {a ∈ A : Q(b)a ∈ L∀ b ∈ A}.

Then

kn(L) = K3.

Proof. By Proposition 4.14, K3 is a norm-closed ideal of A contained in L. Hence

K3 is a subset of kn(L). Let J be a norm-closed ideal of A contained in L. Then for

a in J and b in A, {b a b} lies in J and hence L. Therefore a lies in K3 and J is a

subset of K3. The result follows.

4.3 Central kernels and support spaces

The purpose of this section is to establish Corollary 4.19, an expression for the norm

central kernel of the kernel of a functional on a JB*-triple. The main result, Theorem

4.16, which leads to Corollary 4.19, is more general than is required here, but is of

independent interest [37].

Recall from Theorem 2.17 that for each element x of the pre-dual A∗ of the JBW*-

triple A, e(x) denotes the support tripotent of x. Let A be a JBW*-triple and let

L be a subset of the predual A∗. The support space s(L) of L is defined to be the

w*-closure of the linear span of the support tripotents of the elements of L [38]. It

can be shown that the w*-closed inner ideal s(L)⊥ is given by

s(L)⊥ =
⋂
{A0(e(x)) : x ∈ L}.

Theorem 4.16 Let A be a JBW*-triple with predual A∗, and let L be a subset of A∗

with support space s(L) and topological annihilator L◦. Then the annihilator s(L)⊥

and the kernel Ker s(L) of s(L) satisfy

s(L)⊥ ⊆ Ker s(L) ⊆ L◦.
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The central kernels k(s(L)⊥), k(Ker s(L)) and k(L◦) of the spaces s(L), Ker s(L) and

L◦ respectively satisfy

k(s(L)⊥) = k(Ker s(L)) = k(L◦).

Proof. Let a lie in Ker s(L). Then for each element x in L, P2(e(x))a is zero. Hence,

x(a) = x(P2(e(x))a) = 0,

and it follows that Ker s(L) is contained in L◦. Now let J be a w*-closed ideal of A

contained in L◦. Then, for every element a in J and x in L, {a a e(x)} lies in J and

x({a a e(x)}) is zero. By [8], Proposition 1.2, a lies in A0(e(x)). Since this is true for

all elements x in L it follows that J is contained in s(L)⊥. The result is now clear.

In particular, if L is the predual of a w*-closed inner ideal J of the JBW*-triple A,

it follows from Theorem 4.7 and [35] that J coincides with s(L), that Ker J coincides

with (J∗)
◦ and that k(J⊥) coincides with k(Ker J). We shall be interested in the case

when L contains a single element of A∗, and in particular when that element is one

of the pure normal functionals x of A, discussed in Theorem 2.19.

Corollary 4.17 Let A be a JBW*-triple with predual A∗, and let x be a non-zero

element of A∗ with kernel kerx and support tripotent e(x). For j equal to 0, 1, 2, let

Aj(e(x)), be the Peirce spaces corresponding to e(x). Then,

A0(e(x)) ⊆ A0(e(x))⊕ A1(e(x)) ⊆ kerx.

For a subspace L of A, let k(L) be the central kernel of L. Then

k(A0(e(x))) = k(A0(e(x))⊕ A1(e(x))) = k(kerx).

Furthermore, A0(e(x)) ⊕ A1(e(x)) and kerx coincide if and only if x is a scalar

multiple of an element of ∂eA∗,1, the set of pure normal functionals of A.
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Proof. The first part of the result follows by considering the subset L of A∗ in the

statement of Theorem 4.16 to be equal to the singleton {x}. Let x be a scalar multiple

of an element x̂ of ∂eA∗,1. Then, e(x) is minimal and, for all elements a in A,

P2(e(x))a = x̂(a)e(x).

If a lies in ker x then P2(e(x))a is zero. Hence, a is an element of A0(e(x))⊕A1(e(x)).

Conversely, if kerx and A0(e(x)) ⊕ A1(e(x)) agree, then any element a of A may be

written

a = x̂(a)e(x)− (a− x̂(a)e(x)).

Since a − x̂(a)e(x) lies in kerx, it follows that P2(e(x))a is equal to x̂(a)e(x). Thus

e(x) is minimal and x̂ lies in ∂eA∗,1 as required.

Let In(A) be the complete lattice of norm-closed inner ideals of the JB*-triple A.

When A is a JBW*-triple, let I(A) denote the complete lattice of w*-closed inner

ideals.

Let A be a JB*-triple and let J be an element of In(A). By separate w*-continuity

of the triple product, J 7→ J̄w∗ is a map from In(A) to I(A∗∗) for which the map

K 7→ K ∩ A from I(A∗∗) onto In(A) is an inverse. It is important to note that this

map need not be injective since K ∩ Aw∗ may be a proper subspace of K.

Lemma 4.18 Let A be a JB*-triple and let L be a w*-closed subset of the bidual A∗∗.

Then the central kernel k(L) of L and the norm central kernel kn(L∩A) of the subset

L ∩ A of A satisfy the equation

k(L) ∩ A = kn(L ∩ A).

Proof. Since k(L) is contained in L, k(L) ∩ A is a norm-closed ideal contained in

L∩A and hence k(L)∩A is contained in kn(L∩A). Conversely, kn(L∩A) and hence

its w*-closure are ideals contained in L and hence in k(L).
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Corollary 4.19 Let A be a JB*-triple with dual A∗ and bidual A∗∗. For any x in A∗,

let kerx be the kernel of x in A, let kn(kerx) be the norm central kernel of x in A, let

e(x) be the support tripotent of x in A∗∗, let A∗∗0 (e(x)) be the Peirce-0 space of e(x) in

A∗∗, let k(A∗∗0 (e(x))) be the central kernel of A∗∗0 (e(x)) in A∗∗ and let kn(A∗∗0 (e(x))∩A)

be the norm central kernel of A∗∗0 (e(x)) ∩ A in A. Then

kn(kerx) = k(A∗∗0 (e(x))) ∩ A = kn(A∗∗0 (e(x)) ∩ A).

Proof. The result follows from Corollary 4.17 and Lemma 4.18.

Corollary 4.19 gives a third characterisation of the primitive spectrum PrimA of

a JB*-triple A, in terms of the set of pure functionals ∂eA
∗
1 of A, namely, that

PrimA = {k(A∗∗0 (e(x))) ∩ A : x ∈ ∂eA∗1}.

4.4 The spectrum

This section obtains some additional results about the spectrum of a JB*-triple A.

Recall that the spectrum of an arbitrary Banach space A was defined in Section 3.3

using the set ∂eA
∗
1 of pure functionals of A. The main result of this section, Theorem

4.24 is a topological result connecting ∂eA
∗
1 to the spectrum in the JB*-triple case.

Lemma 4.20 Let A be a JB*-triple and let L be an L-summand in A∗. Then L
w∗

is

an L-summand of A∗.

Proof. Since L◦ is a norm-closed ideal in A∗∗, A ∩ L◦ is a norm-closed ideal in A.

Since A ∩ L◦ coincides with L◦, the result follows.

Corollary 4.21 Let A be a JB*-triple, let x be an element of ∂eA
∗
1, the set of pure

functionals of A, let Lx be the smallest L-summand of A∗ containing x and let Kx be

the smallest w*-closed L-summand of A∗ containing x. Then Kx coincides with the

w*-closure of Lx.
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Proposition 4.22 Let A be a JB*-triple, let ∂eA
∗
1 be the set of pure functionals of

A and let S be a subset of the spectrum, SpecA of A. For a pure functional x of A,

let Lx denote the smallest L-summand containing x, let Jx denote the norm central

kernel kn(kerx) of x in A, let Jx denote the central kernel k(kerx) of x in A∗∗ and

let Θ : ∂eA
∗
1 7→ SpecA denote the map x 7→ Jx. Then:

(i) (
⋂
{Jx : Jx ∈ S})◦ = lin{Lx : Jx ∈ S}

w∗
;

(ii) ∂e(
⋂
{Jx : Jx ∈ S})◦1 ⊆

⋃
{∂e(Lx)1 : Jx ∈ S}

w∗
= Θ−1(S)

w∗
.

Proof. For x in ∂eA
∗
1, let Kx denote the smallest w*-closed L-summand of A∗ con-

taining x. By [21], Lemma 3.3 and [21], Lemma 3.4 (a),

∂e (∩{Jx : Jx ∈ S})◦1 ⊆ (∪{J◦x : Jx ∈ S}) ∩ ∂eA∗1
w∗

= ∪{∂e(Kx)◦1 : Jx ∈ S}
w∗

⊆ ∪{∂e(Lx)1 : Jx ∈ S}
w∗

= Θ−1(S)
w∗
.

Clearly lin{Lx : Jx ∈ S}w∗ is a subset of (
⋂
{Jx : Jx ∈ S})◦. Conversely, by the

Krein-Milman Theorem

(∩{Jx : Jx ∈ S})◦1 ⊆ conv (∪{∂e(Lx)1 : Jx ∈ S})
w∗
⊆ lin{Lx : Jx ∈ S}

w∗

and the result follows.

Corollary 4.23 Let A be a JB*-triple, let ∂eA
∗
1 be the set of pure functionals of

A, let S be a subset of the spectrum SpecA and let S
J′

be the closure of S in the

structure topology J′. For an element x of ∂eA
∗
1, let Lx denote the smallest L-summand

containing x, let Jx denote the central kernel k(ker∗ x) of x in A∗∗ and let Θ : ∂eA
∗
1 7→

SpecA denote the map x 7→ Jx. Then, for an element x of ∂eA
∗
1, the following are

equivalent:

(i) Jx ∈ SJ′

;
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(ii) Θ−1(S)
w∗
∩ Lx 6= ∅;

(iii) ∂e(Lx)1 ⊆ Θ−1(S)
w∗
.

Proof. (i)⇒(iii): Suppose that Jx is an element of S
J′

. Then Kx, the smallest w*-

closed L-summand of A∗ containing x, is contained in (∩Jx∈SJx)◦ and by Proposition

4.22 (ii), x is contained in Θ−1(S)
w∗

. Let y be an element of ∂e(Lx)1. Then Jy and

Jx coincide and y lies in Θ−1(S)
w∗

.

(iii)⇒(ii): This is true by definition.

(ii)⇒(i): Let y lie in Θ−1(S)
w∗
∩ Lx. Then ∩Jx∈SJx is annihilated by y and is

therefore contained in Jy. By Lemma 3.25, S
J′

contains Jy which equals Jx.

Theorem 4.24 Let A be a JB*-triple, let ∂eA
∗
1 be the set of pure functionals of A,

equipped with the relative w*-topology and let SpecA be the spectrum of A equipped

with the structure topology J′. For each element x in ∂eA
∗
1, let Jx be the norm central

kernel kn(kerx) of x. Then the map Θ : ∂eA
∗
1 7→ SpecA given by x 7→ Jx is open.

Proof. Let U be a w*-open subset of ∂eA
∗
1. Assume that there exists an element Jx

in SpecA\Θ(U)
J′

such that x lies in U . Then x lies in Θ−1(SpecA\Θ(U))
w∗

. This is

a closed subset of ∂eA
∗
1\U . By contradiction, SpecA\Θ(U) is closed.

The result of [21], Theorem 3.5 can be immediately recovered from Theorem 4.24.

In the special case of a C*-algebra, these results are similar to [25], 3.4.2, 3.4.10 and

3.4.11, but with the larger set of pure functionals replacing the pure states.

4.5 The primitive spectrum

In this section it is shown that for each element a in the JB*-triple A, the map

P 7→ ‖a+P‖ is lower semi-continuous on the primitive spectrum PrimA, of A. This

has the important consequence that PrimA is a locally compact space. The main

results of this section can be found in [17], [20].
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Lemma 4.25 Let A be a Banach space, let {Iλ : λ ∈ Λ} be a non-empty collection

of closed subspaces of A such that for any λ1, λ2 in Λ, there exists λ3 in Λ such that

Iλ1, Iλ2 are subsets of Iλ3. Then I = ∪λ∈ΛIλ is a closed subspace of A, and, for each

element a in A,

‖a+ I‖ = inf
λ∈Λ
‖a+ Iλ‖.

Proof. Clearly ∪λ∈ΛIλ is a subspace of A. Let ε > 0. Then, there exists an element

b in I such that

‖a+ b‖ < ‖a+ I‖+ ε/2.

For some λ in Λ, Iλ contains an element c such that ‖b− c‖ < ε/2. Thus

‖a+ Iλ‖ ≤ ‖a+ c‖ ≤ ‖a+ b‖+ ‖c− b‖ < ‖a+ I‖+ ε.

Since, for all λ in Λ, we also have,

‖a+ I‖ ≤ ‖a+ Iλ‖

the result follows.

Lemma 4.26 Let A be a JB*-triple, let {Jλ : λ ∈ Λ} be a family of norm-closed

ideals of A and let J be the norm-closed ideal ∩λ∈ΛJλ. Then

‖a+ J‖ = sup
λ∈Λ
‖a+ Jλ‖.

Proof. The natural triple homomorphism of A/J into
⊕∞

λ∈ΛA/Jλ is injective and

therefore an isometry by [10], Lemma 1.

Lemma 4.27 will be required in the proof of Theorem 5.14.

Lemma 4.27 Let A be a Banach space, let a be an element of A and let I be a proper

M-ideal of A with topological annihilator I◦. Then there exists an element x in ∂eI
◦
1 ,
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the set of extreme points of the unit ball I◦1 of I◦, with norm central kernel Jx, such

that

x(a) = ‖a+ I‖ = ‖a+ Jx‖.

Proof. First consider the case in which I is zero. Without loss of generality, assume

that a has unit norm. Then the w*-closed face

{a}′ = {x ∈ A∗1 : x(a) = 1}

of A∗1 is non-empty by the Hahn-Banach theorem and possesses an extreme point by

the Krein-Milman theorem. Thus, there exists an element x in ∂eA
∗
1, the set of pure

functionals of A, such that x(a) equals 1. Now, for all elements b in Jx,

‖a‖ = x(a) = x(a+ b) ≤ ‖a+ b‖.

Thus

‖a‖ ≤ ‖a+ Jx‖ ≤ ‖a‖.

For the general case, the above shows that there exists an element y in ∂e(A/I)∗1 with

norm central kernel Jy in A/I such that

y(a+ I) = ‖a+ I‖ = ‖(a+ I) + Jy‖.

By Lemma 3.8, there an element x in ∂eI
◦
1 with norm central kernel Jx in A such that

x(a) = y(a+ I).

By Lemma 3.6, for all b in A, b+ Jx lies in Jy. Thus,

‖a+ I‖ = ‖(a+ I) + Jy‖ ≤ inf{‖(a+ b) + I‖ : b ∈ Jx} ≤ ‖a+ Jx‖ ≤ ‖a+ I‖.

The result follows.

A filter on a set S is a non-empty collection F of non-empty subsets of X such
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that

F1, F2 ∈ F ⇒ F1 ∩ F2 ∈ F

F ∈ F , F ⊆ F ′ ⇒ F ′ ∈ F .

If X is a topological space, a point x of X is said to be a cluster point of the filter F

on X if each F in F has non-empty intersection with each neighbourhood of x. The

point x is a cluster point of F if and only if x lies in ∩{F : F ∈ F}. A topological

space is compact if and only if each filter has a cluster point [77], Theorem 17.4.

Proposition 4.28 Let A be a JB*-triple with primitive spectrum PrimA, equipped

with the Jacobson topology J. For an element a in A, and α > 0, let X be the set

X = {P ∈ PrimA : ‖a+ P‖ ≥ α}.

Then X is J-compact.

Proof. Let F be a filter on X. For F in F , define JF to be the norm-closed ideal

∩P∈FP . Then, for any element P in F ,

‖a+ JF‖ ≥ ‖a+ P‖ ≥ α

For elements F1, F2 in F , F1 ∩ F2 lies in F . Thus, JF1 , JF2 are contained in JF1∩F2 .

By Lemma 4.25 and Theorem 3.4,

J =
⋃
{JF : F ∈ F}

n

=
∨
{JF : F ∈ F}

is a closed ideal of A,

‖a+ J‖ = inf
F∈F
‖a+ JF‖ ≥ α.

and J is a proper ideal of A. By Lemma 4.27, there exists an x in ∂eJ
◦
1 with norm
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central kernel Jx such that

α ≤ ‖a+ J‖ ≤ ‖a+ Jx‖.

Therefore Jx lies in X. Let hull JF be the hull of JF . Since x annihilates J , for each

element F in F ,

Jx ∈ hull JF = F
J
.

Therefore, Jx is an element of ∩{F J
: F ∈ F} and Jx is a cluster point of F . The

result follows.

Proposition 4.29 Let A be a JB*-triple and let ZIn(A) be the complete lattice of

norm-closed ideals of A. For each element a in A define the mapping ρa : ZIn(A)→

[0,∞) by

ρa(I) = ‖a+ I‖.

Then, for all elements a in A, with respect to the Jacobson topology, the function ρa

is lower semi-continuous on the primitive spectrum PrimA.

Proof. Let α be a real number and put

S = ρa|−1
PrimA((−∞, α])

= {P ∈ PrimA : ‖a+ P‖ ≤ α}.

Let Q lie in the closure of S in PrimA. Then
⋂
S is contained in Q, and, hence,

‖a+Q‖ ≤ ‖a+ ∩S‖

= sup{‖a+ P‖ : P ∈ S}

≤ α.

Thus, Q is contained in S, and S is closed. Therefore ρ−1
a (α,∞) is open and ρa is

lower semi-continuous, as required.
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Corollary 4.30 Let A be a JB*-triple with primitive spectrum PrimA. Let β be the

collection of subsets of PrimA of the form

{P ∈ PrimA : ‖a+ P‖ > 1}

for a in A. Then β is a base for the Jacobson topology on PrimA.

Proof. By Proposition 4.29, every element of β is an open subset of PrimA. Let

U be an open subset of PrimA and let I be the norm-closed ideal such that U has

complement hull I. Then, for any element P0 of U , I is not a subset of P0 and there

exists an element a in I such that

‖a+ P0‖ > 1.

For Q in hull I, ‖a+Q‖ takes the value zero. Thus

P0 ∈ {Q ∈ PrimA : ‖a+Q‖ > 1} ⊆ U

and β is a base for the Jacobson topology on PrimA.

Proposition 4.31 Let A be a JB*-triple with primitive spectrum PrimA. Then

PrimA is locally compact in the Jacobson topology.

Proof. Let P be a primitive ideal and let U be an open neighbourhood of P in

PrimA. Then PrimA\U coincides with the hull hull J of some norm-closed ideal J

of A such that J is not a subset of P . Choose an element a in J\P and let ρa be as

defined in 4.29. Then ‖a+ P‖ is non-zero and ρa is zero on hull J . Define

V = {Q ∈ PrimA : ‖a+Q‖ > 1/2‖a+ P‖}

C = {Q ∈ PrimA : ‖a+Q‖ ≥ 1/2‖a+ P‖}.

Then

P ∈ V ⊆ C ⊆ U
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and U contains the compact neighbourhood C of P as required.

4.6 Topologies on the complete lattice of ideals

In this section it is shown that the lower, Scott and Lawson topologies (Section 3.2)

on the complete lattice of M-ideals of a JB*-triple can be classified in a way which

will be useful in the construction of continuous cross-sections over spaces of ideals in

Chapters 5 and 6.

The first result, Proposition 4.32, reduces to [53], Theorem 7.2 in the case of a

C*-algebra. See also [42], Theorem 2.2.

Proposition 4.32 Let A be a JB*-triple and let ZIn(A) be the complete lattice of

norm-closed ideals of A. For each element a in A define the mapping ρa : ZIn(A) 7→

[0,∞) by

ρa(I) = ‖a+ I‖.

Then the following results hold.

(i) The lower topology is the weakest topology for which, for all elements a in A,

ρa is lower semi-continuous on ZIn(A).

(ii) The Scott topology is the weakest topology for which, for all elements a in A, ρa

is upper semi-continuous on ZIn(A).

(iii) The Lawson topology is the weakest topology for which, for all elements a in A,

ρa is continuous on ZIn(A).

Proof. Let W and S denote the lower and Scott topologies on ZIn(A) respectively

and let J denote the Jacobson topology on PrimA, the primitive spectrum of A.

(i) Let a be an element of A, let J be an element of ZIn(A) and let ε > 0. Since

‖a+ J‖ = sup
P∈hull J

‖a+ P‖,
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there exists an element P in hull J such that

‖a+ J‖ − ε/2 < ‖a+ P‖.

By Proposition 4.29, ρa is J-lower semi-continuous on PrimA. Thus the set V defined

by

V = {Q ∈ PrimA : ‖Q+ a‖ > ‖a+ J‖ − ε}

= ρ−1
a (‖a+ J‖ − ε,∞)

is J-open in PrimA and contains P . Define a subset U(∅, {V }) of ZIn(A) by

U(∅, {V }) = {K ∈ ZIn(A) : V ∩ hullK 6= ∅}.

Then U(∅, {V }) is a W-open neighbourhood of J and, for an element K in U(∅, {V }),

there exists an element Q in V ∩ hullK such that

‖a+K‖ ≥ ‖a+Q‖ > ‖a+ J‖ − ε.

Thus ρa is W lower semi-continuous at J .

Now, let T be the weakest topology such that for all elements a in A, ρa is lower

semi-continuous. We have shown that T is weaker than W. Let V be a W-open subset

of ZIn(A) and let I be an element of V . Then V contains a W-open neighbourhood

U of the form

U = U({J1, . . . , Jn}) =
n⋂
j=1

ZIn(A)\ ↑ Jj

for some J1, . . . , Jn in ZIn(A). Thus, for j equal to 1, . . . , n, we may choose an

element aj in Jj\I. Then,

I ∈ ∩nj=1ρ
−1
aj

(0,∞) =
n⋂
j=1

{J ∈ ZIn(A) : aj /∈ J} ⊆ U ⊆ V.
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Thus, every element of V has a T-open neighbourhood in V . It follows that W and

T are the same topology.

(ii) Let a be an element of A, let J be an element of ZIn(A) and let ε > 0. Define

C to be the subset of PrimA given by

C = {P ∈ PrimA : ‖a+ P‖ ≥ ‖a+ J‖+ ε}.

Then, by Proposition 4.28, C is J-compact. Let U(C, ∅) be the S-open set defined

by

U(C, ∅) = {K ∈ ZIn(A) : C ∩ hullK = ∅}

= {K ∈ ZIn(A) : ‖a+ P‖ < ‖a+ J‖+ ε ∀P ∈ hullK}.

Then, U(C, ∅) is a S-open neighbourhood of J , and, for K in U(C, ∅),

‖a+K‖ = sup
P∈hullK

‖a+ P‖ ≤ ‖a+ J‖+ ε.

Therefore ρa is S upper semi-continuous at J .

Now let T be the weakest topology such that, for all elements a in A, ρa is upper

semi-continuous. We have shown that T is weaker than S. Let V be a S-open subset

of ZIn(A) and let Q be its complement. By [53], Theorem 3.7, Q is W-compact and

lower, that is to say, if I ≤ J for some I in ZIn(A) and J in Q then I lies in Q. Let

I be an element of V . Using (i), for an element a in I, we may define the W-open

set U(a) by

U(a) = {J ∈ ZIn(A) : ‖a+ J‖ > 1} = ρ−1
a (1,∞).

Since Q is lower, for J in Q we may choose an element a in I\J such that ‖a+J‖ > 1.

Thus the set of {U(a) : a ∈ A} is an W-open cover for Q. Let a1, . . . , an be elements

of A be such that U(a1), . . . , U(an) is a finite subcover of Q. Then,

I ∈
n⋂
j=1

ρ−1
aj

(−∞, 1) ⊆ V.
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Thus, every element of V has a T-open neighbourhood in V . It follows that S and

T are the same topology.

(iii) Immediate from (i) and (ii).

Lemma 4.33 presents a further characterisation of the Lawson topology which will

be useful in the sequel.

Lemma 4.33 Let A be a JB*-triple and let ZIn(A) be the complete lattice of norm-

closed ideals of A equipped with the Lawson topology. Then, the net (Jλ) in ZIn(A)

converges to an element J in ZIn(A) if and only if, for all elements a in A, the net

(‖a+ Jλ‖) converges to ‖a+ J‖.

Proof. For J in ZIn(A), define a mapping NJ : a 7→ ‖a + J‖. It follows from

Proposition 4.32 (iii) that the map N : J 7→ NJ |A1 is a homeomorphism from ZIn(A)

onto N(A), the image of N in the product space [0, 1]A1 , equipped with the topology

of pointwise convergence. This completes the proof.

Lemma 4.34 Let A be a JB*-triple with primitive spectrum PrimA. Then the Ja-

cobson topology J is Hausdorff if and only if it coincides with the restriction of the

Lawson topology L to PrimA.

Proof. Suppose that PrimA is J-Hausdorff and let C be a L-closed subset of ZIn(A).

Let (Pλ) be a net in C ∩ PrimA, J-converging to some element P in PrimA. Since

PrimA is J-Hausdorff, ρa|PrimA is Jacobson continuous and, for all a in A, the net

(ρa(Pλ)) converges to ρa(P ). Thus (Pλ) L-converges to P and P lies in C ∩ PrimA.

It follows that if U is L-open in ZIn(A) then U ∩ PrimA is J-open in PrimA. The

converse is immediate since L is Hausdorff.

4.7 Primitive spectrum and centralizer

This section returns to the complete regularisation of the primitive spectrum and

the Dauns-Hofmann theorem (Theorem 3.26) to find an explicit construction of the
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Stone-Čech compactification of the primitive spectrum. The results of this section

will be used in Chapter 5 to interpret the action of the centralizer on a quasi-standard

JB*-triple (Corollary 5.18). Results of a similar nature to the results in this section

have been obtained for algebras in [22], III.6.

Lemma 4.35 Let A be a JB*-triple with centralizer Z(A), let ZIn(A) be the complete

lattice of norm-closed ideals of A and let ZIn(Z(A)) be the complete lattice of norm-

closed ideals of Z(A). For each element J of ZIn(A), let J5 be the subset of Z(A)

defined by

J5 = {T ∈ Z(A) : TA ⊆ J}.

and for each element I of ZIn(Z(A)), let I4 be the subset of A defined by

I4 = IA = {Ta : T ∈ I, a ∈ A}.

Then the following results hold.

(i) The mapping J 7→ J5 is an order preserving mapping from ZIn(A) into

ZIn(Z(A)).

(ii) The mapping I 7→ I4 is an order preserving mapping from ZIn(Z(A)) into

ZIn(A).

(iii) For each element J of ZIn(A) and each element I of ZIn(Z(A)),

J ⊇ (J5)4, I ⊆ (I4)5.

(iv) For each family {Jλ : λ ∈ Λ} of elements of ZIn(A),

∩{J5λ : λ ∈ Λ} = (∩{Jλ : λ ∈ Λ})5.

Proof. Let I be an element of ZIn(Z(A)). By the Cohn factorisation theorem ([26],

B.7.1), I4 is a closed subspace of A, and it follows that I4 is an ideal of A. The rest

of the result follows easily from the definitions.
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Lemma 4.36 Let A be a JB*-triple with centralizer Z(A). Let x be an element of

∂eA
∗
1, the set of pure functionals of A, let x̌ be the character of Z(A) defined for T in

Z(A) by

T ∗x = x̌(T )x,

let kn(kerx) be the norm central kernel of x, and let ker x̌ be the kernel of x̌. Then,

adopting the notation of Lemma 4.35, P 7→ P5 is a mapping from PrimA, the

primitive spectrum of A into PrimZ(A), the primitive spectrum of Z(A) such that

kn(kerx)5 = ker x̌.

Proof. Let x be an element of ∂eA
∗
1, let T be an element of kn(kerx)5 and choose

an element a in A such that x(a) is non-zero. Then,

x̌(T )x(a) = x(Ta) = 0,

which implies that T lies in ker x̌. Conversely, let T be an element of ker x̌. Then the

ideal TA is contained in kerx and hence in kn(kerx). As a consequence, for every

element P in PrimA, P5 lies in PrimZ(A).

Lemma 4.37 Let A be a JB*-triple, and adopt the notation of Lemma 4.35. For an

element J of ZIn(A), let hullA J be the hull of J in PrimA and for an element I of

ZIn(Z(A)), let hullZ(A) I denote the hull of I in PrimZ(A). Let JA be the Jacobson

topology on PrimA. Then:

(i) for each element J of ZIn(A),

hullZ(A) J
5 = {P5 : P ∈ hullA J}

JA
;

(ii) for each element I of ZIn(Z(A)),

hullA I4 = {P ∈ PrimA : P5 ∈ hullZ(A) I}.
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Proof. Let J be a norm-closed ideal of A. Then,

J5 = (∩ hullA J)5 = ∩{P5 : P ∈ hullA J}.

Taking the hull in PrimZ(A) of both sides, (i) follows.

Let I be a norm-closed ideal of Z(A) and let P be an element of hullA I4. Then,

I ⊆ (I4)5 ⊆ P5,

and it follows that P5 lies in hullZ(A) I. Conversely, if P is a primitive ideal of A

such that P5 lies in hullZ(A) I then,

I4 ⊆ (P5)4 ⊆ P.

Thus, P lies in hullA I4, thereby proving (ii).

Let Y and Z be topological spaces. A map φ : Y 7→ Z is said to be an embedding

of Y into Z if φ is a homeomorphism of Y onto the subset φ(Y ) of Z. The pair (φ, Z)

is said to be a compactification of Y if Z is a compact Hausdorff space and φ(Y )

is dense in Z. The compactifications (φ, Z) and (φ′, Z ′) are said to be topologically

equivalent if there exists a homeomorphism θ : Z 7→ Z ′ such that φ′ equals φ ◦ θ.

Theorem 4.38 Let Y be a completely regular space. Then there exists a compactifi-

cation (β, βY ) of Y such that every continuous bounded real valued function on β(Y )

has a (necessarily unique) extension to βY . This compactification is unique up to

topological equivalence.

The compactification (β, βY ) in Theorem 4.38 is said to be the Stone-Čech com-

pactification of Y . For more information about the Stone-Čech compactification, see

[76],

Proposition 4.39 Let A be a JB*-triple with centralizer Z(A). Let PrimA, and

PrimZ(A) be the primitive spectrums of A and Z(A) respectively, equipped with their
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Jacobson topologies. Let (γ, γ PrimA) be the complete regularisation of PrimA. In

the notation of Lemma 4.35, let 5 : PrimA 7→ PrimZ(A) be the mapping P 7→ P5.

Then there exists a compactification (5′,PrimZ(A)) of γ PrimA such that

5′ ◦ γ = 5

and (5′,PrimZ(A)) is topologically equivalent to the Stone-Čech compactification of

γ PrimA.

Proof. It follows from Lemma 4.37 that 5 is a continuous map from PrimA into

PrimZ(A). The latter space is compact and Hausdorff, and hence completely regular.

By Proposition 3.14, 5 induces a continuous mapping 5′ : γ PrimA 7→ PrimZ(A)

such that the mappings5′◦γ and5 coincide on PrimA. Let (β, β PrimA) denote the

Stone-Čech compactification of γ PrimA. Then, by [77], 19.5,5′ induces a continuous

mapping 5′′ : β PrimA 7→ PrimZ(A) such that

5′′ ◦ β ◦ γ = 5′ ◦ γ = 5.

Using Lemma 4.37,

PrimZ(A) = hull({0}5) = {P5 : P ∈ PrimA}
J
.

It follows that 5′′(β PrimA) is a compact subset of PrimZ(A) containing a dense

subset 5(PrimA). Hence 5′′ is surjective.

The continuous surjection 5′′ induces an injective *-homomorphism (5′′)∗ from

Z(A) into C(β(PrimA)), the space of continuous complex-valued functions on

β(PrimA). Let ∂eA
∗
1 be the set of pure functionals of A and let Ψ : ∂eA

∗
1 7→ PrimA be

the mapping taking each element x in ∂eA
∗
1 to its norm central kernel kn(kerx). For

each element f in C(β(PrimA)), the function f ◦β◦γ◦Ψ lies in Cb(∂eA
∗
1), the space of

structure-continuous complex-valued bounded functions on ∂eA
∗
1. By Theorem 3.26,
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there exists an element T in Z(A) such that, for all functionals x in ∂eA
∗
1,

f ◦ ι ◦ γ ◦Ψ(x)(1 + ker x̌) = T + ker x̌.

Then,

((5′′)∗T )(ι ◦ γ(kn(kerx)))(1 + ker x̌) = T + kn(kerx)5,

and, on a dense subset of β PrimA,

((5′′)∗T ) = f.

Therefore (5′′)∗ is a *-isomorphism and 5′′ is a homeomorphism. Since 5′′◦β equals

5′ on γ PrimA, this implies that (5′,PrimZ(A)) is a compactification of γ PrimA,

topologically equivalent to (β, β PrimA).

It will frequently be useful to identify the complete regularisation of the primitive

spectrum of a JB*-triple with a set of ideals, as described in Lemma 4.40.

Lemma 4.40 Let A be a JB*-triple with primitive spectrum PrimA, let (γ, γ PrimA)

be the complete regularisation of PrimA, as defined in Proposition 3.13, and let Ω(A)

be the set of ideals

Ω(A) = {∧γ(P ) : P ∈ PrimA}.

Then the map γ(P ) 7→ ∧γ(P ) is a bijection from γ PrimA onto Ω(A) and, for each

P in PrimA,

γ(P ) = hull∧γ(P ).

Proof. The result follows from the observation that, for each P in PrimA, γ(P ) is

Jacobson closed in PrimA.

Theorem 4.41 gives a more explicit realisation of the Stone-Čech compactification.

Theorem 4.41 Let A be a JB*-triple and adopt the notation of Proposition 4.39.

Identify γ PrimA with the set of ideals Ω(A) as in Lemma 4.40. For an element x
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of ∂eA
∗
1, the set of pure functionals of A, let Jx be the norm central kernel of x in

A, let Gx be the element ∧γ(Jx) of Ω(A) and let Ix̌ be the kernel in Z(A) of the

character x̌ induced on Z(A) by x in Proposition 3.22. Then (5,PrimZ(A)) is a

compactification of Ω(A), topologically equivalent to the Stone-Čech compactification

of Ω(A), such that,

G5x = J5x = Ix̌.

The inverse I 7→ I4 satisfies

(Ix̌)4 = Gx.

Proof. By Proposition 4.39 and Lemma 4.36,

γ(Jx) = {P ∈ PrimA : γ(P ) = γ(Jx)}

= {P ∈ PrimA : 5′ ◦ γ(P ) = 5′ ◦ γ(Jx)}

= {P ∈ PrimA : P5 = Ix̌}.

Using the fact that P5 is a proper ideal of Z(A), Ix̌ is a maximal ideal of Z(A) and,

by Lemma 4.37,

γ(Jx) = {P ∈ PrimA : P5 ∈ hull Ix̌}

= hull((Ix̌)4).

Taking intersections,

Gx = ∩γ(Jx) = (Ix̌)4.

Using Lemma 4.35,

G5x = (∩γ(Jx))
5 = ∩{P5 : P ∈ γ(Jx)}.

But it has just been shown that, for all P in γ(Jx), P
5 equals Ix̌. Thus

G5x = Ix̌,
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as required.

Corollary 4.42 Let A be a JB*-triple with centralizer Z(A), let Ω(A) be the com-

pletely regular space of ideals of Theorem 4.41 and let Cb(Ω(A)) be the space of

bounded continuous complex-valued functions on Ω(A). Then there is an isomet-

ric *-isomorphism T 7→ gT from Z(A) onto Cb(Ω(A)) such that, for all elements G

in Ω(A) and a in A,

Ta+G = gT (G)a+G.

Proof. Let PrimZ(A) be the primitive spectrum of Z(A). By Theorem 4.41,

(5,PrimZ(A)) is topologically equivalent to the Stone-Čech compactification of

Ω(A). It follows that the map h 7→ h ◦ 5 is an isometric *-isomorphism from

C(PrimZ(A)), the space of continuous complex-valued functions on PrimZ(A) onto

Cb(Ω(A)). By the Gelfand-Naimark theorem, there is an isometric *-isomorphism

T 7→ hT from Z(A) onto C(PrimZ(A)) such that, for I in PrimZ(A),

hT (I)(IdA + I) = T + I.

For T in Z(A), let gT be the function G 7→ hT (G5). Then T 7→ gT is an isometric

*-isomorphism from Z(A) onto Cb(Ω(A)), such that, for G in Ω(A), gT (G)IdA − T

lies in G5. Thus, for a in A, gT (G)a − Ta lies in (G5)4, which, by Theorem 4.41,

coincides with G.
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Chapter 5

Densely standard JB*-triples

In this chapter an investigation into the existence of a Gelfand representation for JB*-

triples is described. Given a JB*-triple A, the task is to construct a locally compact

Hausdorff space, Ω, associate to each point ω in Ω a JB*-triple Aω, and represent

each element a of A as an element of
∏

ω∈Ω Aω. The space Ω is said to be the base

space, for ω in Ω the JB*-triple Aω is said to be the fibre at ω, and the elements

of
∏

ω∈ΩAω are said to be cross-sections. The aim is to develop a tool for reducing

the study of a JB*-triple to the study of the more accessible sub-class of primitive

JB*-triples, that is, the class of JB*-triples for which the zero ideal is primitive. To

achieve this end, the construction will be subject to the conditions:

(S1) the range of the representation is a structure known as a maximal full triple of

cross-sections, described in Section 5.2;

(S2) the set of elements ω in Ω for which the associated fibre Aω is a primitive

JB*-triple is dense in Ω.

Condition S1 ensures that, under the representation, the structure of A decom-

poses into the structure of the fibres in a natural way. Condition S2 ensures that,

for a dense subset of Ω, the fibres can be embedded as w*-dense subsets of Cartan

factors. A JB*-triple for which a construction satisfying conditions S2 and S1 exists

is said to be densely standard. The aim of this chapter is to develop results to help

establish which JB*-triples are densely standard.
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In Section 5.1 the general theory of continuous cross-sections of Banach spaces

over a locally compact Hausdorff space Ω is summarised, and specialised to the case

in which the Banach spaces are JB*-triples. It is shown that, for a general JB*-triple

A, if Ω is chosen to be the closure FellA of the primitive spectrum PrimA of A in

the Lawson topology, then there exists an isometric isomorphism, known as the Fell

representation, from A into a JB*-triple of cross-sections over A.

In Section 5.2 the consequences of the JB*-triple A possessing a representation

satisfying Condition S1 are investigated. Condition S1 ensures that the representa-

tion decomposes norm-closed inner ideals of A and pure functionals on A into the

corresponding objects in the fibres, a result that leads to a Glimm Stone-Weierstrass

theorem for A.

In Section 5.3 the question of identifying the base space Ω of a JB*-triple A known

to possess a representation satisfying Condition S1 is addressed. It is shown that Ω

can be constructed from PrimA by means of a Hausdorff equivalence relation. In the

case in which Ω contains a dense set of proper primal ideals, the JB*-triple A is said

to be quasi-standard. The main result of the chapter, Theorem 5.17, shows that if A is

quasi-standard, then the base space Ω is uniquely determined up to homeomorphism

as the space of minimal primal ideals in A with the relativised lower topology, which

coincides with the relativised Lawson topology. Furthermore, the centralizer of A may

be identified with the space Cb(Ω) of continuous bounded complex-valued functions

on Ω. This result is significant because it applies to densely standard JB*-triples.

In Section 5.4 the Fell representation of a JB*-triple A is reconsidered. Since, by

construction, the base space FellA contains a dense set PrimA of primitive ideals, a

natural question arises as to when the range is maximal. The results of the preceding

sections are applied to show that the natural representation over the space Fell′A

of proper Fell ideals is maximal if and only if PrimA is Hausdorff in the Jacobson

topology. This is of course a restrictive condition, but the set of JB*-triples for

which the condition holds includes JB*-triples of constant finite rank and abelian

JB*-triples, thereby providing the first examples of densely standard JB*-triples.

The theory developed in this chapter will be applied in Chapter 6 to provide
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further examples of densely standard JB*-triples.

5.1 Full triples of cross-sections

In this section the machinery required to construct and study representations of JB*-

triples is developed. Let Ω be a locally compact Hausdorff space and with each

element ω in Ω associate a complex Banach space Aω with norm ‖.‖ω. The elements

of the vector space
∏

ω∈Ω Aω are said to be cross-sections, the space Ω is said to be the

base space, and the spaces {Aω : ω ∈ Ω} are said to be the fibres. Each cross-section

a of
∏

ω∈Ω Aω may be considered as a map on Ω such that, for each element ω in Ω,

a(ω) lies in Aω. A cross-section a is said to be bounded if the real-valued function

ρa : ω 7→ ‖a(ω)‖ω is bounded on Ω. For an element a in the subspace of bounded

cross-sections, let

‖a‖∞ = sup
ω∈Ω
‖a(ω)‖ω.

Then ‖.‖∞ is a norm on the space of bounded cross-sections. A vector subspace F of∏
ω∈Ω Aω such that:

(i) for each element b in F , the function ρb : ω 7→ ‖b(ω)‖ω is continuous on Ω;

(ii) for each element ω in Ω, the set {b(ω) : b ∈ F} is dense in Aω;

is said to be a continuity structure for
∏

ω∈ΩAω. A cross-section a is said to be

continuous with respect to F at an element ω0 of Ω if, for any ε > 0, there exists an

element bε in F and a neighbourhood Uε of ω0 such that, for all ω in Uε,

‖(a− bε)(ω)‖ω < ε.

The cross-section a is said to be F -continuous on Ω if it is F -continuous at all points

of Ω. When each fibre Aω coincides with a fixed Banach space A, a is continuous in

the usual sense if and only if it is continuous with respect to the continuity structure

of constant A-valued functions on Ω. For convenience, Lemma 5.1 records some

elementary properties of continuity structures [42].
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Lemma 5.1 Let Ω be a locally compact Hausdorff space, and, for each element ω in

Ω, let Aω be a complex Banach space with norm ‖.‖ω. Let F be a continuity structure

for the space
∏

ω∈Ω Aω, let ω0 be an element of Ω, and let Cω0(F ) denote the set of

cross-sections F -continuous at ω0. Then, the following results hold.

(i) F is a subset of Cω0(F ).

(ii) For each element a in Cω0(F ) the function ρa : ω 7→ ‖aω‖ω is continuous at ω0.

(iii) Cω0(F ) is a subspace of
∏

ω∈Ω Aω, closed under multiplication by the complex

valued functions on Ω which are continuous at ω0.

(iv) A cross-section a lies in Cω0(F ) if and only if for each element b in F the

function ρa−b : ω 7→ ‖(a− b)(ω)‖ω is continuous at ω0.

(v) Let (an)∞n=1 be a sequence of cross-sections in Cω0(F ), and let a be a cross-

section such that, for each element n in N, the sequence (a− an)∞n=1 is bounded

and the sequence (‖a− an‖∞)∞n=1 converges to zero. Then a lies in Cω0(F ).

(vi) For every element aω0 in Aω0 there exists a F -continuous cross-section a such

that a(ω0) equals aω0.

By Lemma 5.1 (iii), the set of cross-sections F -continuous on Ω form a vector

space, denoted by C(Ω, F ). By Lemma 5.1 (v) and [56], Lemma 1.5.2, the subspace of

bounded F -continuous cross-sections is a Banach space which we denote by Cb(Ω, F ).

An element a of Cb(Ω, F ) is said to vanish at infinity if the function ρa vanishes at

infinity. Since the space C0(Ω) of complex-valued continuous functions on Ω vanishing

at infinity is a closed subspace of Cb(Ω), it follows that C0(Ω, F ), the set of cross-

sections vanishing at infinity, is a closed subspace of Cb(Ω, F ) and, hence, a Banach

space.

Now consider the situation in which, for each element ω in Ω, the fibre Aω is a

JB*-triple. Then, the pointwise defined triple product makes
∏

ω∈Ω Aω into a Jordan

*-triple. A continuity structure F is said to be a triple continuity structure if it is a

subtriple of
∏

ω∈Ω Aω. It is straightforward to show that, if F is a triple continuity
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structure, then, for each element ω in Ω, the space Cω(F ) is a subtriple of
∏

ω∈Ω Aω.

In this case, it follows that Cb(Ω, F ) is a Jordan *-triple containing C0(Ω, F ) as a

subtriple. In the situation considered by Fell [42] in which each fibre is in fact a

C*-algebra, it is immediate that Cb(Ω, F ) is also a C*-algebra. A new result, Lemma

5.2 below, is required to prove the equivalent statement for JB*-triples.

Let T be an element of a unital Banach algebra with numerical range V (T ). Define

the real scalar µ(T ) by

µ(T ) = sup
λ∈V (T )

{Reλ} = sup
α>0
{ 1

α
log ‖ expαT‖}.

Observe that

−µ(−T ) = inf
λ∈V (T )

{Reλ}.

Since the numerical range of an hermitian operator is the convex hull of its spectrum,

when T is hermitian −µ(−T ) is positive if and only if T is positive. The reader is

referred to [15] for details.

Lemma 5.2 Let Ω be a locally compact Hausdorff space. For each element ω in Ω,

let Aω be a complex Banach space with norm ‖.‖ω, let F be a continuity structure for

the space
∏

ω∈Ω Aω of cross-sections, and let Cb(Ω, F ) be the Banach space of bounded

F -continuous cross-sections on Ω. Let (Tω)ω∈Ω be a collection of maps such that:

(i) for each element ω in Ω, the map Tω lies in B(Aω), the Banach algebra of

bounded linear operators on Aω;

(ii) for each element a in Cb(Ω, F ) the cross-section Ta defined, for ω in Ω, by

(Ta)(ω) = Tωa(ω) lies in C(Ω, F );

(iii) the set {‖Tω‖ : ω ∈ Ω} is bounded above.

Then, the map T : a 7→ Ta is a bounded linear operator on Cb(Ω, F ) such that,

‖T‖ = sup
ω∈Ω
‖Tω‖,

µ(T ) ≤ sup
ω∈Ω

µ(Tω)
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and, for all ω in Ω,

((expT )a)(ω) = (expTω)a(ω).

Proof. The proof of the equalities is elementary. Let α be a positive scalar. Then

‖(expαT )a‖∞ ≤ sup
ω∈Ω
{‖ expαTω‖ω}‖a‖∞.

Since the logarithmic function is continuous and monotonic increasing,

1

α
log ‖(expαT )‖∞ ≤ sup

ω∈Ω
{ 1

α
log ‖ expαTω‖ω}.

Thus

µ(T ) ≤ sup
α>0

sup
ω∈Ω
{ 1

α
log ‖ expαTω‖ω}.

Since α and ω are independent, the supremum operations commute to give the desired

inequality.

Corollary 5.3 Let Ω be a locally compact Hausdorff space and, for each element ω in

Ω, let Aω be a JB*-triple. Let F be a triple continuity structure for
∏

ω∈Ω Aω. Then

Cb(Ω, F ), the Banach space of bounded F -continuous cross-sections on Ω, is a JB*-

triple, and C0(Ω, F ), the Banach subspace of F -continuous cross-sections vanishing

at infinity, is a JB*-subtriple.

Proof. Let a and b be elements of Cb(Ω, F ). For ω in Ω, let D(a(ω)) be the operator

defined on Aω by

D(a(ω))b(ω) = {a a b}(ω).

For any complex number α, the collection of maps (αD(a(ω)))ω∈Ω satisfy the condi-

tions of Lemma 5.2. Thus, a bounded linear operator D(a) is defined on Cb(Ω, F )

by

(D(a)b)(ω) = D(a(ω))b(ω)

such that

µ(αD(a)) ≤ sup
ω∈Ω

µ(αD(a(ω))).
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Putting α equal to i, −i and −1,

µ(±iD(a)) ≤ sup
ω∈Ω

µ(±iD(a(ω))) = 0,

and

−µ(−D(a)) ≥ inf
ω∈Ω
−µ(−D(a(ω))) ≥ 0.

It follows that D(a) is positive and hermitian. Since

‖a3‖ = sup
ω∈Ω
‖a(ω)‖3 = ‖a‖3,

Cb(Ω, F ) is a JB*-triple. Thus the closed subtriple C0(Ω, F ) is also a JB*-triple.

Proposition 5.4 Let Ω be a locally compact Hausdorff space and, for each element

ω in Ω, let Aω be a JB*-triple. Let A be a triple continuity structure for
∏

ω∈Ω Aω

such that:

(i) for each element a in A, ρa : ω 7→ ‖a(ω)‖ vanishes at infinity;

(ii) A is complete in the supremum norm.

Then A is a JB*-subtriple of Cb(Ω, A), the JB*-triple of bounded A-continuous cross-

sections, and for each ω in Ω,

Aω = {a(ω) : a ∈ A}.

Proof. Since A is a closed subspace of Cb(Ω, A), it is a JB*-triple. For ω in Ω and a

in A, the map a 7→ a(ω) defines a triple homomorphism from A onto a dense subset

of Aω. The result follows by [10], Lemma 1.

Given a locally compact space Ω and a JB*-triple A satisfying the conditions of

Proposition 5.4, A of is said to be a full triple of cross-sections over Ω.

The next lemma shows that, subject to suitable conditions, sets of norm-closed

ideals give rise to representations of JB*-triples onto full triples of cross sections in a

natural way.
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Lemma 5.5 Let A be a JB*-triple and let Ω be a set of norm-closed ideals with trivial

intersection, equipped with a locally compact Hausdorff topology such that, for each

element a in A, the function ρa : G 7→ ‖a+G‖ is continuous and vanishes at infinity

on Ω. To each element G in Ω, associate the fibre A/G. For each element a in A,

let â be the cross section â of
∏

G∈Ω A/G defined by â : G 7→ a+G. Then Â, the set

of such cross-sections, is a full triple of cross-sections over Ω, and the map a 7→ â is

an isometric isomorphism of A onto Â.

Proof. That Â is complete in the supremum norm follows from Lemma 4.26. The

result is then immediate from the hypothesis.

When the conditions of Lemma 5.5 are satisfied, the representation a 7→ â is said to

be the quotient representation over Ω. As a first example of a quotient representation

of a JB*-triple A onto a full triple of cross-sections, consider the base space FellA,

defined to be the closure of the primitive spectrum PrimA in the Lawson topology.

By Proposition 4.32, FellA satisfies the conditions of Lemma 5.5. By construction,

FellA possesses a dense subset of primitive ideals, and hence satisfies condition S2 of

the introduction. However, it will emerge in Theorem 5.21 that this representation

only satisfies condition S1, the important property of maximality, for a sub-class of

the JB*-triples.

5.2 Maximal full triples of cross-sections

A full triple of cross-sections A over a locally compact Hausdorff space Ω is said to

be maximal if, whenever B is a full triple of cross-sections over Ω such that A is a

subspace of B, then A and B coincide. The interest in full triples of cross-sections

which are maximal stems from the fact, established in this section, that the structure

of a maximal full triple of cross-sections decomposes into the structure of its fibres.

This leads to a Glimm Stone-Weierstrass theorem for maximal full triples of cross-

sections.

A standard tool in the proofs of this section will be partitions of unity. Recall
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that, given a locally compact Hausdorff space Ω, a compact subset K of Ω, and an

open cover U1, . . . , Un of K, there exist functions f1, . . . , fn such that, for each j in

1, . . . , n, fj has compact support contained in Uj, fj takes values in the range [0, 1]

and Σn
j=1fj coincides with 1 on K. Such a collection f1, . . . , fn is said to be a partition

of unity on K, subordinate to the cover U1, . . . , Un.

The discussion begins by establishing some equivalent conditions for maximality.

Lemma 5.6 Let A be a full triple of cross-sections on the locally compact Hausdorff

space Ω, let Cb(Ω) be the space of continuous bounded complex-valued functions on

Ω and let C0(Ω, A) be the space of A-continuous cross-sections vanishing at infinity.

Then, the following conditions are equivalent:

(i) A is a maximal full triple of cross-sections;

(ii) A coincides with C0(Ω, A);

(iii) there exists a triple continuity structure F such that A coincides with the space

C0(Ω, F ) of F -continuous cross-sections vanishing at infinity;

(iv) A is closed under multiplication by elements of Cb(Ω).

Proof. Given any triple continuity structure F , Lemma 5.1 and Urysohn’s Lemma

show that C0(Ω, F ) is a full triple of cross-sections. The implications (i)⇒(ii)⇒(iii)

are then obvious. The implication (iii)⇒(iv) follows from Lemma 5.1 (iii).

(iv)⇒(ii) Suppose that A is closed under multiplication by elements of Cb(Ω). Let

a be an element of C0(Ω, A) and let ε > 0. For each element ω in Ω there exists an

element bω in A and an open neighbourhood Uω of ω such that ‖(a− bω)(ω′)‖ < ε for

all ω′ in Uω. Let K denote the compact set ρ−1
a ([ε,∞)). The family {Uω : ω ∈ K}

forms an open cover for K. By compactness there exist ω1, . . . , ωn in K such that

Uω1 , . . . , Uωn is an open cover of K. Let f1, . . . , fn be a partition of unity on K

subordinate to this open cover Ω, and let f0 be the function 1Ω −
∑n

j=1 fj. Then, for

any element ω of Ω,

‖(a−
n∑
j=1

fjbωj)(ω)‖ω ≤ f0(ω)‖a(ω)‖ω +
n∑
j=1

fj(ω)‖(a− bωj)(ω)‖ω.
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For j = 1, . . . , n, if ω lies in Uj then ‖(a− bωj)(ω)‖ < ε, and, otherwise fj(ω) is zero.

If ω lies in K, f0(ω) is zero, and otherwise ‖a(ω)‖ω < ε. Thus, a lies in A and (ii)

holds as required.

(ii)⇒(i) Suppose that A coincides with C0(Ω, A). Let B be a full triple of cross

sections over Ω containing A. Let b be an element of B. Then, for any element a of

A, b−a lies in B and hence ω 7→ ‖(b−a)(ω)‖ is continuous on Ω. By Lemma 5.1(iv),

it follows that b is A-continuous. Then b lies in C0(Ω, A) and hence in A. It follows

that A is maximal.

Let A be a maximal full triple of cross-sections on a locally compact Hausdorff

space Ω. For ω in Ω, let Aω denote the JB*-triple

Aω = {a(ω) : a ∈ A}.

A subtriple B of A is said to separate points in tω∈ΩAω if,

(i) for any elements ω in Ω and α in Aω, there exists an element b in B such that

b takes the value α at ω,

(ii) for any distinct elements ω1 and ω2 of Ω and any elements α1, α2 of Aω1 and

Aω2 respectively, there exists an element b in B such that

b(ω1) = α1, b(ω2) = α2.

Note that when Ω contains more than one element, (ii) implies (i).

Lemma 5.7 Let A be a maximal full triple of cross-sections on a locally compact

Hausdorff space Ω. Then A separates points in tω∈ΩAω.

Proof. Let ω1 and ω2 be distinct points of Ω, let α1 be an element of Aω1 , and

let α2 be an element of Aω2 . By Urysohn’s lemma there exists elements a1 and a2

in C0(Ω, F ) with disjoint compact supports such that a1(ω1) equals α1 and a2(ω2)

equals α2. Letting a be the element a1 + a2 gives the desired result.
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This section will conclude with a Stone-Weierstrass theorem for maximal full

triples of cross-sections (Theorem 5.13) which forms a converse to Lemma 5.7. Before

this converse can be proved, it is necessary to describe the structure of a maximal full

triple of cross-sections in terms of the structure of its fibres. This description begins

with a study of inner ideals.

Lemma 5.8 Let A be a maximal full triple of cross-sections over the locally compact

Hausdorff space Ω and let I be a norm-closed inner ideal of A. Then I is closed under

multiplication by elements of Cb(Ω), the space of bounded complex-valued continuous

functions on Ω.

Proof. For an element a in A, let ρa be the mapping ω 7→ ‖a(ω)‖. Let b be an

element of I and let ω be an element of Ω. By Proposition 2.22, {b(ω)Aω b(ω)}
n

is

the smallest norm-closed inner ideal of Aω containing b(ω). Thus, for any ε > 0, there

exists an element aω in A such that

‖b(ω)− {b(ω) aω(ω) b(ω)}‖ω < ε.

Let Uω denote the open neighbourhood ρ−1
b−{b aω b}(−ε, ε) of ω, and let K denote the

compact set ρ−1
b ([ε,∞)). By compactness, there exist elements ω1, . . . , ωn in K such

that {Uω1 , . . . , Uωn} forms an open cover of K. Let f1, . . . , fn be a partition of unity

on K subordinate to this open cover Ω and let f0 be the function 1Ω−
∑n

j=1 fj. Then,

for any element ω of Ω,

‖(b−
∑n

j=1
{b fjaωj b})(ω)‖ω ≤ ‖f0(ω)‖‖b(ω)‖ω +

n∑
j=1

‖fj(ω)‖ω‖(b− {b aωj b})(ω)‖ω

< ε.

Let g be any element of Cb(Ω). Then,

‖gb−
∑n

j=1
{b fj ḡaωj b}‖∞ < ε‖g‖∞

Since {b
∑n

j=1 fj ḡaωj b} is an element of I and I is norm-closed, it follows that gb
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must also lie in I.

Proposition 5.9 Let A be a JB*-triple which is a maximal full triple of cross-sections

over a locally compact Hausdorff space Ω and let I be a norm-closed inner ideal of A.

For each element ω in Ω, the set Iω defined by

Iω = {a(ω) : a ∈ I}

is a norm-closed inner ideal of Aω and

I = {a ∈ A : a(ω) ∈ Iω ∀ω ∈ Ω}.

Proof. Let a be an element of A such that a (ω) lies in Iω for all ω in Ω and let ε > 0.

For ω0 in Ω there exists bω0 in I such that a and bω0 agree at ω0. By continuity of

ρa−bω0 , there exists an open neighbourhood Uω0 of ω0 such that ‖(a− bω0) (ω)‖ < ε

for all ω in Uω0 . By a standard partition of unity argument,

‖a−
n∑
j=1

fjbωj‖∞ < ε

for some ω1, . . . , ωn in Ω and some partition of unity f0, f1, . . . , fn on K subordinate

to the open cover Ω\K,Uω1 , . . . , Uωn of Ω. Thus a lies in I.

Since I is a norm-closed subset of Cb(Ω, A), the space of A-continuous cross-

sections on Ω, and closed under multiplication by elements of Cb(Ω), the space of

continuous bounded complex valued functions on Ω, it follows that Iω is norm-closed

in Aω. Clearly Iω is an inner ideal of Aω.

Let A be a JB*-triple. Recall, from Section 3.3, that the elements of ∂eA
∗
1, the

set of extreme points of the dual unit ball A∗1 of A are said to be the pure functionals

of A. It is now possible to describe the pure functionals of a full triple of cross-

sections. The result could alternatively have been expressed in terms of Cartan factor

representations, which would reveal it to be an extension of [42], Theorem 1.1 to the

JB*-triple setting.
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Theorem 5.10 Let A be a JB*-triple that is a full triple of cross-sections over a

locally compact Hausdorff space Ω, let Aω denote the fibre at the element ω in Ω, and

let ∂eA
∗
1 and ∂e(Aω)∗1 denote respectively the set of pure functionals of A and Aω. Let

tω∈Ω∂e(Aω)∗1 be the set

tω∈Ω∂e(Aω)∗1 = {(ω, x) : ω ∈ Ω, x ∈ ∂e(Aω)∗1}.

For each pair (ω, x) in tω∈Ω∂e(Aω)∗1, define a functional Φω,x for a in A by

Φω,x(a) = x(a(ω)).

Then the map Φ : (ω, x) 7→ Φω,x maps tω∈Ω∂e(Aω)∗1 into ∂eA
∗
1. If A is maximal then

Φ is a bijection.

Proof. For each element ω in Ω, let δω : A 7→ Aω denote the surjective triple

homomorphism a 7→ a(ω) and let δ̃ω : A/(ker δω) 7→ Aω be the corresponding triple

isomorphism. By Theorem 2.13, δ̃ω is an isometric triple isomorphism and induces

an isometric isomorphism φω : A∗ω 7→ (ker δω)◦ such that, for x in A∗ω and a in A,

(φωx)(a) = x(δ̃ω(a+ ker δω)) = x(a(ω)).

Thus Φ : (ω, x) 7→ φωx is a well-defined map from tω∈Ω∂e(Aω)∗1 into ∂eA
∗
1.

Now consider the case when A is maximal. Let y be an element of ∂eA
∗
1 and let I

be the norm central kernel of y. For ω in Ω, let Iω be the ideal of Aω,

Iω = {a(ω) : a ∈ I},

and let Λ be the set

Λ = {ω ∈ Ω : Iω 6= Aω}.

Since y is non-zero, by Proposition 5.9, Λ is non-empty. Assume that Λ contains

distinct elements ω1 and ω2. Since Ω is Hausdorff, there exists disjoint neighbourhoods

U1 and U2 of ω1 and ω2 respectively. Clearly, for j equal to 1, 2, the set Kj of elements
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of A vanishing outside of Uj is an ideal of A and K1 and K2 have zero intersection.

Since I is primitive, it is prime, and, interchanging ω1 and ω2 if necessary, it may be

assumed that K1 is a subset of I. This implies that

{a(ω1) : a ∈ K1} ⊆ Iω1 ⊆ Aω1 .

But, by Urysohn’s Lemma, every element of Aω1 is of the form a(ω1) for some a in

K1. Thus Iω1 and Aω1 coincide, contradicting the choice of ω1 as an element of Λ.

Thus Λ contains a single point ωy. By Proposition 5.9,

I = {a ∈ A : a(ωy) ∈ Iωy}.

Observe that ker δωy is a subset of I, and, hence, y lies in ∂e(ker δωy)
◦
1, the set of

extreme points of the unit ball of (ker δωy)
◦. Let xy be the element φ−1

ωy y of ∂e(Aωy)
∗
1.

Then,

Φ(ωy, xy) = φωyxy = y.

and Φ is surjective. Let (ω, x) be a pair in tω∈Ω∂e(Aω)∗1 such that y equals Φ(ω, x).

Assume that ω is distinct from ωy. Then ω does not lie in Λ and hence, for any α in

aω, there exists a in I such that

x(α) = x(a(ω)) = y(a) = 0,

contradicting the fact that x has norm 1. Thus ω coincides with ωy and

x = φ−1
ωy y = xy.

This shows that φ is injective.

Corollary 5.11 Let A be a JB*-triple that is a full triple of cross-sections over a

locally compact Hausdorff space Ω, let Aω denote the fibre at the element ω in Ω and

let C0(Ω, A) denote the space of A-continuous cross-sections vanishing at infinity.
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Let ∂eC0(Ω, A)∗1, ∂eA
∗
1 and ∂e(Aω)∗1 denote respectively the set of pure functionals of

C0(Ω, A), A and Aω. Let tω∈Ω∂e(Aω)∗1 be the set

tω∈Ω∂e(Aω)∗1 = {(ω, x) : ω ∈ Ω, x ∈ ∂e(Aω)∗1}.

For each pair (ω, x) in tω∈Ω∂e(Aω)∗1, define a functional Φω,x for a in C0(Ω, A) by

Φω,x(a) = x(a(ω))

Then the map Φ : (ω, x) 7→ Φω,x is a bijection from tω∈Ω∂e(Aω)∗1 onto ∂eC0(Ω, A)∗1

and the map Φ : (ω, x) 7→ Φω,x|A is a surjection from tω∈Ω∂e(Aω)∗1 onto ∂eA
∗
1.

Proof. By Lemma 5.6, C0(Ω, A) is maximal. Applying Theorem 5.10 to both

C0(Ω, A) and A shows that Φ is a bijection from tω∈Ω∂e(Aω)∗1 onto ∂eC0(Ω, A)∗1 and

the range of the map Φ : (ω, x) 7→ Φω,x|A is a subset of ∂eA
∗
1. Let z be an element

of ∂eA
∗
1. By the Hahn-Banach and Krein-Milman Theorems, there exists an element

y in ∂eC0(Ω, A)∗1 extending z. Since Φ is a bijection, there exist ω in Ω and x in

∂e(Aω)∗1 such that y equals Φ(ω, x). Thus z equals Φω,x|A and the map x 7→ Φω,x|A is

surjective.

Corollary 5.12 Let A be a JB*-triple that is a full triple of cross-sections over a

locally compact Hausdorff space Ω and let Aω denote the fibre at the element ω of

Ω. Let ∂eA∗1
w∗

be the w*-closure of the set of pure functionals of A and let (Aω)∗1 be

the dual unit ball of Aω. Then, for every element x in ∂eA∗1
w∗ ∪ {0}, there exists an

element ω in Ω and an element y in (Aω)∗1 such that, for all a in A

x(a) = y(a(ω)).

Proof. When x is equal to zero, the result is trivial. If x is non-zero then there

exists a net (xλ) in ∂eA
∗
1 which is w*-convergent to x. By Corollary 5.11, there exists

a net (ωλ) in Ω and, for each element λ, an element yλ in ∂e(Aωλ)∗1, the set of pure
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functionals of Aωλ , such that, for all elements a in A,

xλ(a) = yλ(a(ωλ)).

Choose a in A such that x(a) is non-zero, and let ε be equal to 1/2|x(a)|. Then, there

exists an element λ0 such that, for all λ ≥ λ0,

2ε = |x(a)| ≤ |xλ(a)− x(a)|+ |xλ(a)| < ε+ |xλ(a)|.

Thus, for all λ ≥ λ0,

ε < |yλ(a(ωλ))| ≤ ‖a(ωλ)‖ωλ . (5.2.1)

Since the map ρa : ω 7→ ‖a(ω)‖ vanishes at infinity, (ωλ)λ≥λ0 is contained in a

compact subset of Ω and therefore has a subnet (ωµ) converging to a point ω in Ω.

Let δω : A 7→ Aω be the surjective triple homomorphism a 7→ a(ω) Taking limits in

5.2.1 shows that a does not lie in ker δω. Thus, x lies in (ker δω)◦1 and we can define

y to be equal to (δ∗ω)−1x.

The concluding result of this section is the converse to Lemma 5.7, a Glimm

Stone-Weierstrass theorem for maximal full triples of cross-sections.

Theorem 5.13 Let A be a JB*-triple that is a maximal full triple of cross-sections

over a locally compact Hausdorff space Ω and let B be a norm-closed subtriple of A.

Then B coincides with A if and only if B separates points in tω∈ΩAω.

Proof. Let A be maximal and let B separate A. For ω in Ω, let Aω be the fibre

associated with ω. By the Glimm Stone-Weierstrass Theorem for JB*-triples [68], it

is sufficient to show that B separates points in ∂eA∗1
w∗ ∪ {0}. To this end, let x1 and

x2 be distinct elements of ∂eA∗1
w∗ ∪ {0}. By Corollary 5.12, there exists elements ω1

and ω2 in Ω and y1 in (Aω1)
∗
1 and y2 in (Aω2)

∗
1 such that, for all elements a in A

x1(a) = y1(a(ω1)), x2(a) = y2(a(ω2))
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Since x1 and x2 are distinct, there exists an element a in A separating x1 and x2. By

hypothesis, there exists an element b in B such that,

b(ω1) = a(ω1), b(ω2) = a(ω2)

Therefore,

x1(b) = y1(b(ω1)) = y1(a(ω1)) = x1(a),

x2(b) = y2(b(ω2)) = y2(a(ω2)) = x2(a).

Thus the element b separates x1 from x2.

When A is a C*-algebra, the results presented here extend those obtained in [42]

for norm-closed left ideals to norm-closed inner ideals and from pure states to pure

functionals.

5.3 Quasi-standard JB*-triples

This section contains the main results of the chapter. First, it is shown in Theorem

5.14 that, under favourable circumstances, namely the existence of an open Hausdorff

equivalence relation on the primitive spectrum, it is possible to construct a represen-

tation of a JB*-triple onto a maximal full triple of cross sections over a base space of

norm-closed ideals. Theorem 5.16 shows that, conversely, if a JB*-triple possesses a

representation onto a maximal full triple of cross sections over a base space of norm-

closed ideals, then the primitive spectrum possesses an open Hausdorff equivalence

relation and the representation arises from the construction of Theorem 5.14. This

then leads to the main result of the chapter, Theorem 5.17, in which it is shown that

the JB*-triple A is quasi-standard if and only if the canonical representation of A

as a full triple of cross-sections over the set of minimal primal ideals is an isometric

*-isomorphism onto a maximal full triple of cross-sections.

Proposition 3.13, the construction of the complete regularisation, gives an example
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of a Hausdorff equivalence relation on the primitive spectrum of any JB*-triple.

Theorem 5.14 Let A be a JB*-triple, let PrimA be the primitive spectrum of A,

equipped with the Jacobson topology, let ∼ be a Hausdorff equivalence relation on

PrimA, and let PrimA/ ∼ be the set of equivalence classes of elements of PrimA.

For P in PrimA, let [P ] be the equivalence class containing P , let G[P ] be the norm-

closed ideal

G[P ] = ∧{Q : Q ∈ [P ]}.

and let Ω be the space

Ω = {G[P ] : P ∈ PrimA}

equipped with the quotient topology Q induced by the map P 7→ G[P ]. For each element

G in Ω, let the fibre AG be the JB*-triple A/G, and for each element a in A and G

in Ω, let â be the cross-section of
∏

G∈ΩAG defined for G in Ω by

â(G) = a+G.

Then, the following results hold.

(i) The mapping [P ] 7→ G[P ] is a homeomorphism from PrimA/ ∼ in the quotient

topology onto Ω.

(ii) For each element a in A, the mapping ρa : G 7→ ‖a+G‖ is upper semi-continuous

on Ω, with respect to any Hausdorff topology weaker than Q.

(iii) The following conditions are equivalent:

(a) the equivalence relation ∼ is open;

(b) for all elements a in A, ρa is lower semi-continuous on Ω;

(c) Ω is locally compact and for all elements a in A, ρa is lower semi-

continuous on Ω;

(d) Ω is locally compact, Â, the set {â : a ∈ A}, is a maximal full triple of

cross-sections over Ω and the map a 7→ â, is an isometric isomorphism
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from A onto Â.

Proof. (i) Since PrimA/ ∼ is Hausdorff in the quotient topology, the equivalence

classes are closed sets in PrimA, and the map [P ] 7→ G[P ] has inverse G[P ] 7→ hullG[P ].

By construction, [P ] 7→ G[P ] is a homeomorphism.

(ii) Let T be a Hausdorff topology on Ω, weaker than Q. For an element a in A

and α ≥ 0, let G be an element of Ω such that ‖a+G‖ ≥ α. By Lemma 4.27, there

exists a primitive ideal Q in hullG such that

‖a+Q‖ = ‖a+G‖ ≥ α.

Let q : PrimA 7→ Ω be the T-continuous quotient map P 7→ G[P ]. Then

ρ−1
a ([α,∞)) = {G ∈ Ω : ‖a+G‖ ≥ α} = q({P ∈ PrimA : ‖a+ P‖ ≥ α})

and since T is Hausdorff, as the continuous image of a compact set (Proposition 4.28),

ρ−1
a ([α,∞)) is closed. It follows that ρa is T upper semi-continuous.

(iii) (a)⇔(b) By the argument above, for an element a in A and α ≥ 0,

q({P ∈ PrimA : ‖a+ P‖ > α}) = {G ∈ Ω : ‖a+G‖ > α}

The equivalence of the conditions now follows from Lemma 4.30.

(b)⇒(c) By (a), the map q is an open continuous surjection. Since PrimA is

locally compact (Proposition 4.31) Ω is locally compact.

(c)⇒(d) It follows from (ii) and (c) that for all a in A, ρa is continuous, and by

Lemma 5.5, Â is a full triple of cross-sections. Let B be the maximal full triple of

operator fields C0(Ω, Â). By Theorem 5.13, in order to show that Â and B coincide,

it is sufficient to show that for distinct elements J1 and J2 in Ω and elements a1 and

a2 in A, there exists a in A such that,

a+ J1 = a1 + J1, a+ J2 = a2 + J2. (5.3.1)
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Assume that the norm-closed ideal J1 + J2 is proper. Let P be a primitive ideal

containing J1 +J2 and let Q1, Q2 be primitive ideals such that the equivalence classes

[Q1]∼ and [Q2]∼ are equal to hull J1 and hull J2 respectively. Then P lies in [Q1]∼ ∩

[Q2]∼, contradicting the assumption that J1 and J2 are distinct. Thus J1 +J2 is equal

to A and there exist elements b1 in J1 and b2 in J2 such that

a1 − a2 = b1 − b2.

Define a in A by

a = a1 − b1 = a2 − b2.

Then a satisfies equation 5.3.1 as required.

(d)⇒(b) By definition, for all elements a in A, ρa is continuous and, in particular,

lower semi-continuous.

Corollary 5.15 is recorded for reference in Chapter 6.

Corollary 5.15 Let A be a JB*-triple and let Ω(A) be the complete regularisation of

the primitive spectrum of A, identified with a set of ideals of A as in Lemma 4.40.

For each element a in A, the mapping ρa : G 7→ ‖a + G‖ is upper semi-continuous

on Ω(A). The restriction of the Scott topology to Ω(A) is weaker than the completely

regular topology on Ω(A).

Proof. The completely regular topology is a Hausdorff topology weaker than the

quotient topology on Ω(A). The result is therefore immediate from Theorem 5.14

and Proposition 4.32.

Theorem 5.16 Let A be a JB*-triple possessing a set Ω of norm-closed ideals

equipped with a locally compact Hausdorff topology T such that the quotient repre-

sentation of A over Ω is an isometric *-isomorphism onto a maximal full triple of

cross-sections over Ω. Let PrimA be the primitive spectrum of A equipped with the

Jacobson topology and let the relation ∼ on PrimA be defined for primitive ideals P
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and Q by P ∼ Q if and only if P ∩Q contains an element I of Ω. Then ∼ is an open

equivalence relation on PrimA with quotient space

PrimA/ ∼ = {hull I : I ∈ Ω},

and the map p : S 7→ ∧S is a homeomorphism from PrimA/ ∼ equipped with the

quotient topology onto Ω.

Proof. Let P be a primitive ideal of A. Then P is the norm central kernel kn(kerx)

of some pure functional x of A. By Theorem 5.10, there exist elements I in Ω and y

in ∂e(A/I)∗1 such that, for all elements a in A,

x(a) = y(a+ I).

Therefore, P contains the element I of Ω. If J is also an element of Ω contained in

P then x lies in ∂e(A/J)∗1 and by Theorem 5.10, J coincides with I. Hence, each

primitive ideal contains a unique element of Ω. It follows that ∼ is an equivalence

relation and that the equivalence classes are exactly the sets hull I for I in Ω. It

is now immediate from Proposition 3.10 that p is a bijection onto Ω. Let q be the

quotient map q : PrimA 7→ PrimA/ ∼. The argument of [70], Theorem 1.3 shows

that q ◦ p is continuous and the argument of [61], Theorem 4 shows that q ◦ p is open.

It is then elementary that p is a homeomorphism and that q is open.

A JB*-triple is said to be quasi-standard if it possesses a base space Ω of norm-

closed ideals, equipped with a locally compact Hausdorff topology T such that Ω

possesses a T-dense set of proper primal ideals and A is isometrically *-isomorphic to

a maximal full triple of cross-sections over Ω.

Theorem 5.17, the critical result of this chapter, describes the particularly satis-

factory representation theory of quasi-standard JB*-triples. This result will be useful

in the sequel for identifying classes of JB*-triples which are densely-standard JB*-

triples.
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Theorem 5.17 Let A be a quasi-standard JB*-triple over a base space of norm-

closed ideals Ω with locally compact Hausdorff topology T. Let PrimA be the primitive

spectrum of A and identify its complete regularisation γ PrimA with the set of ideals

Ω(A) as in Lemma 4.40. The the following topological spaces coincide as sets and are

homeomorphic under the identity map:

(i) Ω in the T topology;

(ii) MinPrimalA in the relative lower topology;

(iii) MinPrimalA in the relative Lawson topology;

(iv) Ω(A) in the completely regular topology induced from γ PrimA.

Proof. It follows from Lemma 4.33 that T is stronger than the restriction of the

Lawson and lower topologies to Ω. Since A is quasi-standard, this implies that every

element of Ω is a limit in the lower topology of primal ideals and therefore primal by

Theorem 3.11. By Theorem 5.16, an open equivalence relation ∼ is defined on PrimA

by P ∼ Q if and only if P ∩Q contains an element I of Ω. Let ≈ be the equivalence

relation defined on PrimA in Proposition 3.13. As in [7], Theorem 3.4, for elements

P and Q in PrimA, P ∼ Q if and only if, for all continuous complex-valued bounded

functions f on PrimA, f takes the same value at P as at Q, if and only if P ≈ Q.

Thus γ PrimA is the set of ∼-equivalence classes and Ω and Ω(A) coincide as sets.

By Theorem 3.17,

Ω = Ω(A) = MinPrimalA.

By Theorem 5.16, the map p : S 7→ ∧S is a homeomorphism from γ PrimA with the

quotient topology to Ω with the T topology. Applying Proposition 3.15, p is also a

homeomorphism from γ PrimA with the quotient topology onto Ω equipped with the

lower topology. It follows that T coincides with the restriction of the lower topology to

Ω. By [53], Theorem 6.6 (b), the Lawson topology coincides with the lower topology

on Ω. By Theorem 5.14, the quotient topology on γ PrimA is locally compact and

Hausdorff, and hence completely regular. By Proposition 3.14, the identity map on
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γ PrimA is continuous from the completely regular topology to the quotient topology.

Thus the quotient and completely regular topologies coincide on γ PrimA. The result

follows.

Corollary 5.18, an easy consequence of Theorem 5.17 and Corollary 4.42, shows

that the action of the centralizer on a quasi-standard JB*-triple decomposes into

pointwise multiplication by a continuous bounded function over the base space.

Corollary 5.18 Let A be a quasi-standard JB*-triple, let Z(A) be the centralizer of

A, let ∂eA
∗
1 be the set of pure functionals of A and let MinPrimalA be the space of

minimal primal ideals of A, equipped with the lower topology. For each element x

in ∂eA
∗
1, let Gx be the unique element of MinPrimalA contained in the kernel of x.

For each element T in Z(A), let the complex valued function fT on MinPrimalA be

defined for each element x in ∂eA
∗
1 by

T ∗x = fT (Gx)x

Then the mapping T 7→ fT is an isometric *-isomorphism from Z(A) onto the space

Cb(MinPrimalA) of continuous complex-valued bounded functions on MinPrimalA,

such that, for all a in A and G in MinPrimalA,

Ta+G = fT (G)(a+G).

When A is a C*-algebra, the results of this section reduce to those found in [7],

[73], [70], [61].

5.4 The Fell representation

Let A be a JB*-triple with primitive spectrum PrimA and let L be the Lawson

topology of A. In Section 5.1, the base space FellA was introduced as the L-compact

Hausdorff space PrimA
L
, and it was shown that A has a natural representation onto

a full triple of cross sections over FellA. The elements of FellA are said to be the Fell
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ideals of A. By construction, FellA possesses a L-dense subset of primitive ideals, and

in the search for examples of densely standard JB*-triples, it is natural to ask when

the range of the Fell representation is maximal. In this section, the theory developed

in the rest of the chapter is applied to show that this happens exactly when PrimA

is Hausdorff.

It will be convenient to exclude the element A from FellA, in order to work with

proper primal ideals.

Lemma 5.19 Let A be a JB*-triple and let Fell′A be the space of proper Fell ideals

of A, equipped with the relative Lawson topology. Then Fell′A is a locally compact

Hausdorff space and A is isometrically isomorphic to a full triple of cross sections

over the base space Fell′A.

Proof. Let FellA be the compact Hausdorff space of Fell ideals in the Lawson

topology. Since Fell′A is an open dense subset of FellA, when equipped with the

relative Lawson topology, Fell′A is a locally compact Hausdorff space. For all elements

a in A, ‖a+ A‖ is zero, and, for ε > 0, the set

{J ∈ FellA : ‖a+ J‖ ∈ [ε, ‖a‖]}

is a compact subset of FellA and hence of Fell′A. Since ∩Fell′A is the zero ideal,

the result follows from Lemma 4.32 and Lemma 5.5.

The representation described in Lemma 5.19 is called the Fell representation of

A.

Lemma 5.20 Let A be a JB*-triple. Then every Fell ideal is proper if and only if

PrimA is Jacobson compact.

Proof. Let L be the Lawson topology on the lattice of norm-closed ideals of A. By

Proposition 3.18, it is sufficient to prove that A lies in Primal′A
L
, the L-closure of

the set of proper primal ideals of A, if and only if A is a Fell ideal. Suppose that A

lies in Primal′A
L

and let (Iµ) be a net in Primal′A L-convergent to A. Then a net
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(Pµ) may be chosen in PrimA such that for all µ, Pµ dominates Iµ. For all elements

a in A,

‖a+ Pµ‖ ≤ ‖a+ Iµ‖.

It now follows from Proposition 4.32 that the net (Pµ) L-converges to A, and, hence,

A is a Fell ideal. The converse implication is obvious.

Theorem 5.21 Let A be a JB*-triple and let PrimA be the primitive spectrum

equipped with the Jacobson topology. Then the following are equivalent:

(i) the Fell representation Â of A is maximal;

(ii) PrimA is Hausdorff.

Proof. (i) ⇒ (ii) Let Fell′A be the space of proper Fell ideals of A, equipped with

the Lawson topology. Suppose that Â, the range of the Fell representation of A, is

maximal. Then A is quasi-standard and, by Theorem 5.17, the space Fell′A in the

Lawson topology coincides with MinPrimalA, the set of minimal primal ideals of A,

in the lower topology. It follows that the lower topology is Hausdorff on PrimA.

(ii) ⇒ (i) Suppose that PrimA is Hausdorff. Lemma 3.21 shows that Fell′A and

PrimA coincide as topological spaces. Define the discrete equivalence relation ∼ on

PrimA for P and Q in PrimA by P ∼ Q if and only if P and Q are equal. Then

Theorem 5.14 implies that the Fell transform is maximal.

It is also possible to give a direct proof of Theorem 5.21, adapting the argument

used by Fell [42] in the C*-algebra case.

Important examples of JB*-triples with Hausdorff primitive spectrum include JB*-

triples of constant finite rank ([20], Lemma 4.4) and abelian JB*-triples.
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Chapter 6

Representations of JBW*-triples

In this chapter a Gelfand representation for the important class of JBW*-triples is

investigated. In preparation for this investigation, in Section 6.1 the concept of Glimm

ideals for a general JB*-triple is introduced. In Section 6.2 it is shown that JBW*-

triples are quasi-standard, and that the base space of minimal primal ideals coincides

with the space of Glimm ideals. In Section 6.3 it is shown that Type I JBW*-triples

are densely standard.

6.1 Glimm ideals in JB*-triples

In this section the set of Glimm ideals in an arbitrary JB*-triple is introduced and

some of its basic properties deduced. The relevance of Glimm ideals to the investiga-

tion into Gelfand representations comes from the fact that, for a JB*-triple possessing

a complete tripotent, the set of Glimm ideals may be identified with the complete

regularisation of the primitive spectrum. It is established that questions about Glimm

and primitive ideals in a JB*-triple possessing a complete tripotent can be reduced

to equivalent questions in a unital JB*-algebra.

Let A be a JB*-triple with primitive spectrum PrimA. Let Z(A) be the centralizer

of A and let PrimZ(A) be the primitive spectrum of Z(A). From Lemma 4.35, recall
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that for each norm-closed ideal J of A, the set

J5 = {T ∈ Z(A) : TA ⊆ J}

is a norm-closed ideal in Z(A) and for each norm-closed ideal I in Z(A), the set

I4 = IA = {Ta : T ∈ I, a ∈ A}.

is a norm-closed ideal in A. The set GlimmA of Glimm ideals of A is defined by

GlimmA = {I4 : I ∈ PrimZ(A)}.

Recall that, by Lemma 4.40, the complete regularisation (γ, γ PrimA) of PrimA with

the Jacobson topology can be identified with the set of ideals:

Ω(A) = {∧γ(P ) : P ∈ PrimA}.

Lemma 6.1 Let A be a JB*-triple and let GlimmA be the set of Glimm ideals of A.

Using the notation of Lemma 4.40, the set Ω(A) is a subset of GlimmA. If Ω(A) is

compact in the completely regular topology then Ω(A) and GlimmA coincide as sets

and the map G 7→ G5 is a homeomorphism from GlimmA in the completely regular

topology onto PrimZ(A), the primitive spectrum of the centralizer Z(A) of A, with

inverse I 7→ I4.

Proof. The result follows immediately from Theorem 4.41.

When A is a unital C*-algebra, GlimmA is the set of ideals considered by Glimm

in [49], Section 4. To obtain an equivalent theory in the JB*-triple case, it is necessary

to consider only JB*-triples which possess a complete tripotent. This is a large class

including unital C*-algebras and JB*-algebras, and all JBW*-triples. Proposition 6.2

and its consequences allow the study of the primitive ideal space in such JB*-triples

to be reduced to the unital JB*-triple case.
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Proposition 6.2 Let A be a JB*-triple possessing a complete tripotent u and let

A2(u) be the Peirce-2 space of u. Let PrimA and PrimA2(u) be the primitive spectra

of A and the JB*-algebra A2(u) respectively, equipped with their Jacobson topolo-

gies. Then PrimA and PrimA2(u) are compact and the map υ : J 7→ J ∩ A2(u) a

homeomorphism from PrimA onto PrimA2(u).

Proof. Assume that A possesses a pure functional x such that A2(u) is contained in

kn(ker∗ x), the norm central kernel of x in A. Let A∗∗2 (u) be the Peirce-2 space of u

in A∗∗ and let k(ker∗ x) be the central kernel of x in A∗∗. Then, by Proposition 2.22,

A∗∗2 (u) = A2(u)∗∗ ⊆ k(ker∗ x).

Since u is complete in A, it is complete in A∗∗. Let A∗∗0 (u) be the Peirce-0 space of u

in A∗∗, let k(A∗∗0 (u)) be the central kernel of A∗∗0 (u) and let c(A∗∗2 (u)) be the central

hull of A∗∗2 (u). Then, using Theorem 4.2,

{0} = A∗∗0 (u) = k(A∗∗0 (u)) = k(A∗∗2 (u)⊥) = c(A∗∗2 (u))⊥.

Therefore, as in Corollary 4.17,

A∗∗ = c(A∗∗2 (u)) ⊆ k(ker∗ x) ⊆ ker∗ x ⊆ A∗∗.

which implies that x is equal to zero, yielding a contradiction. Thus hullA2(u), the

set of primitive ideals of A containing A2(u), is empty.

Applying [20], Proposition 3.3, the map υ : J 7→ J ∩ A2(u) is a homeomorphism

from PrimA onto PrimA2(u). Since A2(u) is a unital JB*-algebra, PrimA2(u) is

compact. It follows that PrimA is also compact.

Corollary 6.3 Let A be a JB*-triple possessing a complete tripotent, and adopt the

notation of Lemma 6.1. Then PrimA is compact, GlimmA and Ω(A) coincide as

sets and the completely regular and quotient topologies coincide on this set and are

compact and Hausdorff.
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Proof. Let u be a complete tripotent in A and let A2(u) be the Peirce-2 space of A.

By Proposition 6.2, PrimA is homeomorphic to PrimA2(u), the primitive spectrum

of the unital JB*-algebra A2(u). By the argument used in the case of C*-algebras [64],

the primitive spectrum of a JB*-algebra is compact. Hence PrimA is compact. It

follows that the quotient topology on Ω(A) is compact. The identity map from Ω(A)

with the quotient topology to Ω(A) with the Hausdorff completely regular topology

is continuous, and, hence, a homeomorphism. The result now follows from Lemma

6.1.

Corollary 6.4 is an analogue of a result for w*-closed ideals in JBW*-triples ([54],

Theorem 4.2).

Corollary 6.4 Let A be a JB*-triple possessing a complete tripotent u and let A2(u)

be the Peirce-2 space of u. Then the map υ̃ : J 7→ J ∩A2(u) is an order isomorphism

from ZIn(A), the complete lattice of norm-closed ideals of A, onto ZIn(A2(u)), the

complete lattice of norm-closed ideals of A2(u).

Proof. For each element J in ZIn(A), let hull J be the set of primitive ideals of

A containing J and let hullA2(u)(J ∩ A2(u)) be the set of primitive ideals of A2(u)

containing J ∩A2(u). By Proposition 6.2, the map υ : J 7→ J ∩A2(u) is a homeomor-

phism from PrimA onto PrimA2(u). Let υ̃ be the order isomorphism from ZIn(A)

to ZIn(A2(u)) defined, for J in ZIn(A), by

υ̃(J) =
⋂

υ(hull J).

Using the observation [20], that

hullA2(u)(J ∩ A2(u)) = {P ∩ A2(u) : P ∈ hull J}

it is clear that

υ̃(J) = J ∩ A2(u).

112



Corollary 6.5 can be compared with Theorem 4.5.

Corollary 6.5 Let A be a JB*-triple possessing a complete tripotent u and let A2(u)

be the Peirce-2 space of u. Let Z(A) and Z(A2(u)) be the centralizers of A and

A2(u) respectively. Then the map T 7→ T |A2(u) is a *-isomorphism from Z(A) onto

Z(A2(u)).

Proof. Let ∂eA2(u)∗1 be the set of pure functionals of A2(u) and let y be an element

of ∂eA2(u)∗1. Then there exists a pure functional x of A extending y. For all a in

A2(u) and T in Z(A),

x(Ta) = Ť (y)x(a).

Thus,

ˇT |A2(u)(y) = Ť (x).

Let k
A2(u)
n (ker y) be the largest norm-closed ideal of A2(u) contained in ker y and let

kAn (kerx) be the largest norm-closed ideal of A contained in kerx. Let PrimA and

PrimA2(u) be the primitive spectra of A and A2(u) respectively, equipped with their

Jacobson topologies. By Theorem 3.26 there exists fT in Cb(PrimA), the space of con-

tinuous bounded complex-valued functions on PrimA, and fT |A2(u)
in Cb(PrimA2(u)),

the space of continuous bounded complex-valued functions on PrimA2(u), such that,

for all such x and y,

fT (kn(kerx)) = Ť (x) = Ť (y) = fT |A2(u)
(kA2(u)
n (ker y)).

By [20],

kn(kerx) ∩ A2(u) = kA2(u)
n (ker y),

and it follows that

fT = fT |A2(u)
◦ υ.

For g in Cb(PrimA2(u)), let Sg be the unique element of Z(A2(u)) such that for all

y in ∂eA2(u)∗1,

g(kA2(u)
n (ker y)) = Šg(y).
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Then there is a *-isomorphism µ : Z(A) 7→ Z(A2(u)) defined by

µ(T ) = SfT ◦υ−1

and

µ(T ) = T |A2(u).

In Proposition 6.2, the space of primitive ideals of a JB*-triple A possessing a

complete tripotent u was identified with the primitive spectrum of the unital JB*-

algebra A2(u). Proposition 6.6 is the corresponding result for Glimm ideals.

Proposition 6.6 Let A be a JB*-triple possessing a complete tripotent u and let

A2(u) be the Peirce-2 space of u. Let Ω(Z(A)) be the character space of the centralizer

of A and let GlimmA and GlimmA2(u) be the sets of Glimm ideals of A and A2(u)

respectively, equipped with the topology of Corollary 6.3. Then the map υ̃ : G 7→ G ∩

A2(u) is a homeomorphism from GlimmA onto GlimmA2(u) and for ω in Ω(Z(A)),

with kernel Iω,

υ̃(IωA) = IωA2(u).

Proof. Let PrimA be the primitive spectrum of A, let (γA, γ PrimA) be the complete

regularisation of PrimA and let Ω(A) be the identification of γ PrimA with a set of

ideals of A as in Lemma 4.40. Let PrimA2(u), (γA, γ PrimA2(u)) and Ω(A2(u)) be

the corresponding objects for the JB*-triple A2(u). By Proposition 6.2, the map

υ : J 7→ J ∩ A2(u) is a homeomorphism from PrimA onto PrimA2(u). Observe

that, for P and Q in PrimA, γA(P ) equals γA(Q) if and only if γA2(u)(υ(P )) equals

γA2(u)(υ(Q)). Then a standard property of quotient spaces establishes the existence

of a homeomorphism υ̌ from Ω(A) onto Ω(A2(u)) defined, for P in PrimA, by

υ̌(∧γA(P )) = ∧γA2(u)(υ(P ))

= ∩{υ(Q) : γA(Q) = γA(P )}

= (∧γA(P )) ∩ A2(u).
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By Corollary 6.3, the set Ω(A) coincides with GlimmA and Ω(A2(u)) coincides with

GlimmA2(u). Let ω be a character of Z(A) and let a and T be elements of A and Iω

respectively such that Ta lies in A2(u). Then

Ta = P2(u)Ta = TP2(u)a.

Thus

(IωA) ∩ A2(u) ⊆ IωA2(u).

The reverse inequality is obvious and completes the proof.

6.2 Glimm ideals in JBW*-triples

In this section it will be shown that every JBW*-triple A is quasi-standard and that

the base space MinPrimalA of minimal primal ideals coincides with GlimmA, the

set of Glimm ideals (Theorem 6.13). The following lemmas allow Theorem 6.13 to be

deduced as an application of the main results of Chapter 5.

Lemma 6.7 Let A be a JBW*-algebra with centre Z(A). For ω in ∆(Z(A)), the

character space of Z(A), let Iω be the kernel of ω and let Kω be the norm-closed ideal

IωA of A. Then for every positive element a of A, there exists an element za in Z(A),

with Gelfand transform ẑa, such that, for all elements ω in ∆(Z(A)),

‖a+Kω‖ = ẑa(ω).

Proof. For each element z in Z(A), let ẑ be the Gelfand transform of z. For each

element z in Z(A) and ω in ∆(Z(A)), observe that

z − ẑ(ω)1 ∈ Iω ⊆ Kω.
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and, in Z(A)/Kω,

z +Kω = ẑ(ω)(1 +Kω). (6.2.1)

Suppose that b is an element of A such that, for all ω in ∆(Z(A)), b+Kω lies in the

positive cone of A/Kω. Then, for each pure state x of A, with restriction x̌ to Z(A),

there exists an element c in A such that c+Kx̌ is self-adjoint in A/Kx̌ and

b+Kx̌ = (c+Kx̌)
2.

Without loss of generality, c may be assumed to be self-adjoint in A. It follows that

there exists an element d in Kx̌ such that

b = c2 + d.

Therefore,

x(b) = x(c2) + x(d) = x(c2) ≥ 0

and x̌(b) is positive for all pure states x. By the Krein-Milman Theorem and [51],

1.2.5, b lies in A+, the cone of positive elements of A.

Now let Za be the set

Za = {z ∈ Z(A) : z ≥ a}.

It follows from the w*-closure of Z(A) and A+ that Za is a w*-closed subset of Z(A).

Let z1, . . . , zn be elements of Za with infimum z0. Then, for ω in ∆(Z(A)), using

equation 6.2.1,

z0 +Kω = ẑ0(ω)(1 +Kω) = ((∧nj=1ẑj(ω)))(1 +Kω).

For a fixed element ω in ∆(Z(A)), there exists an integer k in the range 1, . . . , n such
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that, by equation 6.2.1,

((∧nj=1ẑ(ω)))(1 +Kω) = ẑk(ω)(1 +Kω) = zk +Kω ≥ a+Kω

By a previous remark, it follows that z0− a is positive and z0 is contained in Za. Let

Λ be the directed set of finite subsets of Za, ordered by set inclusion. For each F in

Λ, let

wF =
∧
z∈F

z.

Then, from the above, (wF )F∈Λ is a monotone decreasing net in Za, bounded below

by a and it follows from [66], Lemma 1.7.4 that (wF )F∈Λ converges in the w*-topology

to its infimum za in Z(A). Since Za is w*-closed, it follows that za is an element of

Za and

za ≥ a.

For all ω in ∆(Z(A)),

0 ≤ a+Kω ≤ za +Kω = ẑa(ω)(1 +Kω)

which implies that

‖a+Kω‖ ≤ ẑa(ω)‖1 +Kω‖ = ẑa(ω). (6.2.2)

Assume that there exists an element ω0 in ∆(Z(A)) for which

‖a+Kω0‖ < ẑa(ω0).

Let

ε = (ẑa(ω0)− ‖a+Kω0‖)/3 > 0.

and let

U = {ω ∈ ∆(Z(A)) : |ẑa(ω)− ẑa(ω0)| < ε, ‖a+Kω‖ < ε+ ‖a+Kω0‖}.
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Since A is unital, it follows from Lemma 6.1 and Corollary 6.3 that the map ω 7→ Kω

is a homeomorphism from ∆(Z(A)) onto the set of ideals Ω(A) in the completely

regular topology. By Corollary 5.15, ω 7→ ‖a + Kω‖ is upper semi-continuous on

∆(Z(A)). Thus U is an open neighbourhood of ω0. By Urysohn’s lemma, there exists

an element z in Z(A)+
1 such that ẑ(ω0) is equal to 1 and ẑ(ω) is equal to 0 for all ω

in ∆(Z(A))\U . For ω in U ,

‖a+Kω‖ < ε+ ‖a+Kω0‖

= ε− 3ε+ ẑa(ω0)

≤ ẑa(ω)− ε

≤ ẑa(ω)− εẑ(ω).

For ω in ∆(Z(A))\U , using equation 6.2.2,

‖a+Kω‖ ≤ ẑa(ω) = ẑa(ω)− εẑ(ω).

It follows that

‖a+Kω‖1∆(Z(A)) ≤ za − εz

Therefore, for all elements ω in ∆(Z(A))

a+Kω ≤ ‖a+Kω‖(1 +Kω) ≤ (za − εz) +Kω.

and za − εz lies in Za. Since ẑ is non-zero at ω0, za − εz is strictly less than za,

contradicting the fact that za is the infimum of Za. Therefore, by contradiction and

equation 6.2.2, for all ω in Ω(Z(A)),

‖a+Kω‖ ≥ ẑa(ω) ≥ ‖a+Kω‖

which completes the proof.

Lemma 6.8 Let A be a JBW*-triple with centralizer Z(A). For each element ω in
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Ω(Z(A)), the character space of Z(A), let Iω be the kernel of ω. For every element

a in A, there exists an element Ta in Z(A) with Gelfand transform T̂a such that, for

all elements ω in Ω(Z(A))

‖a+ IωA‖ = T̂a(ω).

The function ω 7→ ‖a+ IωA‖ is continuous on Ω(Z(A)).

Proof. By [31], Corollary 7.25, there exists a complete tripotent u in A such that u

dominates the support tripotent r(a) of a and a is a positive element of the JBW*-

algebra A2(u). By Corollary 6.5 there exists an element Ta in Z(A) such that Tau is

the element za defined in Lemma 6.7. For all ω in Ω(Z(A)), the natural embedding

of A2(u)/(IωA2(u)) into A/(IωA) is an injective triple homomorphism and by [10],

Lemma 1,

‖a+ IωA‖ = ‖a+ IωA2(u)‖ = T̂a(ω).

The continuity of ω 7→ ‖a + Kω‖ on Ω(Z(A)) is now immediate from the continuity

of T̂a.

Lemma 6.9 Let A be a JBW*-triple and let B be a w*-dense JB*-subtriple of A.

Let J1, . . . , Jn be norm-closed ideals of B. Then

n⋂
j=1

Jj
w∗

=

(
n⋂
j=1

Jj

)w∗

.

Proof. By the separate w*-continuity of the triple product and the w*-density of B

in A, for j equal to 1, 2, . . . , n, Jj
w∗

is a norm-closed ideal of A. Using Proposition

4.6 and the separate w*-continuity of the triple product,

J1
w∗ ∩ J2

w∗
=
{
J1

w∗
J2

w∗
J1

w∗
}

= {J1 J2 J1}
w∗

= J1 ∩ J2
w∗
.

The result now follows by induction.
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Lemma 6.10 Let A be a JBW*-triple and let B be a w*-dense JB*-subtriple of A.

For every element ω in Ω(Z(A)), the character space of the centralizer Z(A) of A,

let Iω be the kernel of ω. Then B ∩ IωA is a primal ideal of B.

Proof. Let ω be a character of Z(A) and let J1, . . . , Jn be norm-closed ideals of B

with trivial intersection. Using Lemma 6.9, the w*-closed ideals J1
w∗
, . . . , Jn

w∗
also

have trivial intersection. Using the order isomorphism between the w*-closed ideals

of A and the projections of Z(A) [13], there exists projections p1, . . . , pn of Z(A) such

that for j equal to 1, . . . , n, Jj
w∗

coincides with pjA and p1 . . . pn is zero. Thus there

exists an integer j in 1, . . . , n such that pj(ω) is zero. Then pj lies in Iω and pjA is a

subspace of IωA. Hence Jj lies in IωA ∩B and the proof is complete.

Corollary 6.11 Let A be a JBW*-triple. Then every Glimm ideal of A is primal.

Corollary 6.12 Let A be a JB*-triple. Then for every Glimm ideal G in A∗∗, the

bi-dual of A, A ∩G is primal in A.

It it now possible to prove the main theorem of this section.

Theorem 6.13 Let A be a JBW*-triple. Then A is quasi-standard, and the base

space MinPrimalA of minimal primal ideals coincides with the set GlimmA of Glimm

ideals.

Proof. By Corollary 6.3, GlimmA may be identified with the complete regularisation

of the primitive spectrum of A and the quotient and completely regular topologies

coincide and are compact and Hausdorff. By Lemma 6.1 and Lemma 6.8, for each a in

A, the function ρa : G 7→ ‖a+G‖ is continuous on GlimmA. Applying Theorem 5.14,

(iii)⇒(iv), A is isometrically isomorphic to a maximal full triple of cross-sections over

GlimmA. By Corollary 6.11, every element of GlimmA is primal and A is therefore

quasi-standard. By Theorem 5.17, GlimmA coincides with MinPrimalA.

The following corollary is recorded for future reference.
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Proposition 6.14 Let A be a JBW*-triple and let J be a norm-closed ideal of A.

Then J is primal if and only if J contains a Glimm ideal.

Proof. The result follows from Lemma 3.16 and Theorem 6.13.

A natural question to ask is whether any additional theory exists for those prime

and primal ideals in a JBW*-triple which are w*-closed. Lemma 6.15 uses Lemma

6.9 to answer this question.

Lemma 6.15 Let A be a JBW*-triple, let ZI(A) be the complete Boolean algebra of

w*-closed ideals of A and let ZIn(A) be the complete lattice of norm-closed ideals of

A. Let P be an element of ZI(A). Then the following are equivalent:

(i) P is a prime element of ZI(A);

(ii) P is a primal element of ZI(A);

(iii) P is a maximal element of ZI(A) or P equals A;

(iv) P is a prime element of ZIn(A);

(v) P is a primal element of ZIn(A).

Proof. (i)⇔(ii)⇔(iii) This is equivalence of (i), (ii) and (iii) in Lemma 3.9.

(i)⇒(iv) Let J1 and J2 be elements of ZIn(A) such that J1 ∩ J2 is a subset of P .

Then, by Lemma 6.9, J1
w∗∩J2

w∗
is a subset of P . Thus at least one of J1

w∗
and J2

w∗

is a subset of P and the result follows.

(iv)⇒(v) This is a standard property of complete lattice.

(v)⇒(i) Since P is primal in ZIn(A), it is primal in ZI(A).

Corollary 6.16 will be of use in Chapter 7.

Corollary 6.16 Let A be a JB*-triple with bidual A∗∗, let ZIn(A) be the complete

lattice of norm-closed ideals of A and let P be a w*-closed ideal of A∗∗ satisfying

one of the equivalent conditions of Lemma 6.15. Then A ∩ P is a prime element of

ZIn(A).
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Proof. Let J1 and J2 be elements of ZIn(A) such that J1 ∩ J2 is a subset of A ∩ P .

By Lemma 6.9,

J1
w∗ ∩ J2

w∗ ⊆ A ∩ Pw∗ ⊆ P

and therefore at least one of J1
w∗

and J2
w∗

is a subset of P . The result follows.

6.3 Glimm ideals in Type I JBW*-triples

In this section it is shown that every Glimm ideal of a Type I JBW*-triple is primitive.

Combined with the results of Section 6.2, this shows that every Type I JBW*-triple

is densely standard.

The discussion starts with a useful technical lemma.

Let A be a JBW*-triple and let u be a tripotent in A. Define the central support

C(u) of u to be the smallest M-projection P on A for which

Pu = u.

Lemma 6.17 Let A be a JBW*-triple with centralizer Z(A). Let Ω(Z(A)) be the

character space of Z(A), and for ω in Ω(Z(A)), let Iω be the kernel of ω. For a

tripotent u of A, define the subset Su of Ω(Z(A)) by

Su = {ω ∈ Ω(Z(A)) : ‖u+ IωA‖ 6= 0}.

Then Su is w*-clopen in Ω(Z(A)) and the Gelfand transform of C(u), the central

support of u, coincides with χSu, the characteristic function of Su.

Proof. Since u is a tripotent, for ω in Ω(Z(A)), ‖u+ IωA‖ can only take the values

0 and 1. Therefore,

Su = {ω ∈ Ω(Z(A)) : ‖u+ IωA‖ = 1}

and it follows from Lemma 6.8 that Su is w*-clopen. This implies that χSu is a pro-
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jection in C0(Ω(Z(A))), the space of continuous complex-valued functions vanishing

at infinity on Ω(Z(A)).

Let Ĉ(u) be the Gelfand transform of C(u) in C0(Ω(A)). Let ω be an element of

Ω(Z(A)) such that C(u) lies in Iω. Then u lies in IωA and it follows that ω cannot lie

in Su. Therefore, for ω in Su, ω(C(u)) is non-zero. Since ω is a character and C(ω)

a projection, it follows that Ĉ(u)(ω) equals 1. Hence Ĉ(u) ≥ χSu .

Now let P be a projection in Z(A) such that the Gelfand transform P̂ dominates

χSu . Let x be an element of ∂eA
∗
1, the set of pure functionals of A. By Proposition

3.22, a character x̌ is defined for T in Z(A) by the equation

T ∗x = x̌(T )x.

If x̌ lies in Su then

x(Pu) = x̌(P )x(u) = P̂ (x̌)x(u) ≥ χSu(x̌)x(u).

Otherwise, if x̌ lies in the complement of Su then

u ∈ Ix̌A ⊆ kerx

and

x(Pu) = x̌(P )x(u) = 0 = x(u).

Thus, using the Krein-Milman Theorem, Pu = u, and it follows that χSu ≥ Ĉ(u).

This completes the proof.

Corollary 6.18 Let A be a JBW*-triple with centralizer Z(A). Let ω be an element

of Ω(Z(A)), the character space of Z(A) and let Iω be the kernel of ω. Then, for

every tripotent u in IωA, the central support C(u) of u lies in Iω.

Proof. Let u be a tripotent in IωA and let Su be defined as in Lemma 6.17. Then ω

lies in the complement of Su. By Lemma 6.17, C(u) is the characteristic function of

Su, and it follows that ω(C(u)) equals zero, completing the proof.
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Let A be a JB*-triple with centralizer Z(A). A linear map φ : A 7→ Z(A) is said

to be a Z(A)-functional if, for all T in Z(A) and a in A,

φ(Ta) = Tφ(a).

Lemma 6.19 Let A be a Type I JBW*-triple and let e be an abelian tripotent of

A with central support IdA and Peirce-2 space A2(e). Then A possesses a Z(A)-

functional τe such that, for all a in A,

τe(P2(e)a) = τe(a).

The map τe|A2(e) is an isometric *-isomorphism from A2(e) onto Z(A) with inverse

T 7→ Te.

Proof. By Theorem 4.5 there is an isometric isomorphism δe : Z(A) 7→ A2(e) defined

by

δe(T ) = Te.

Define a linear map τe : A 7→ Z(A) by

τe = δ−1
e ◦ P2(e).

For T in Z(A) and a in A,

τe(Ta) = δ−1
e (TP2(e)a) = δ−1

e δe(Tτe(a)) = Tτe(a).

The remaining statements are immediate by construction.

Proposition 6.20 Let A be a Type I JBW*-triple with centralizer Z(A). Let e be an

abelian tripotent in A with central support IdA and Peirce-2 projection P2(e) and let

τe : A 7→ Z(A) be the Z(A)-functional of Lemma 6.19. Let µ be a character of Z(A)

with kernel Iµ, let Kµ be the ideal IµA of A and let x be the functional µ ◦ τe of A.

Then:
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(i) x is a pure functional of A;

(ii) Kµ is a subset of kerx;

(iii) for a in A,

P2(e)a+Kµ = x(a)(e+Kµ).

Proof. (i) Let A∗1 be the unit ball of the dual A∗ of A and let {e}′ be the w*-closed

face of A∗1 given by

{e}′ = {y ∈ A∗1 : y(e) = 1}.

Then

x(e) = µ(IdA) = 1

and, for a in A,

|x(a)| ≤ ‖P2(e)a‖ = ‖a‖.

Thus x lies in {e}′. For y in {e}′, define a bounded linear functional y̌ of Z(A) by

y̌(T ) = y(Te).

Then,

y̌(IdA) = y(e) = 1

and it follows that y̌ is a state of Z(A). By [44], Proposition 1, for a in A,

y(a) = y(P2(e)a) = y(τe(a)e) = y̌(τe(a)).

Observe that

x̌(T ) = µ(τe(Te)) = µ(Tτe(e)) = µ(T ).

Let x1 and x2 be elements of {e}′ and let λ be an element of (0, 1) such that

x = λx1 + (1− λ)x2.
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Then, for T in Z(A),

µ(T ) = x̌(T ) = λx̌1(T ) + (1− λ)x̌2(T ).

Since µ is a pure state of Z(A),

µ = x̌1 = x̌2.

Thus, for j equal to 1 and 2,

xj(a) = x̌j(τe(a)) = µ(τe(a)) = x(a)

and it follows that x is a pure functional of A.

(ii) Let T be an element of Iµ and let a be an element of A. Then,

x(Ta) = µ(τe(Ta)) = µ(T )µ(τe(a)) = 0.

Therefore Kµ is a subset of kerx.

(iii) Let p be a projection in the JBW*-algebra A2(e), the Peirce-2 space of e.

Then there exists a projection P in Z(A) such that

Pe = p.

Since µ is a character, either P or I − P lies in Iµ. Thus, there exists λp in {0, 1}

such that

p+Kµ = λpe+Kµ.

By [51], Proposition 4.2.3, the JBW*-algebra A2(e) is the norm-closed linear span of

its projections. Therefore, for all a in A, there exists λa in C such that

P2(e)a+Kµ = λae+Kµ.
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By (ii), Kµ is a subset of kerx. Therefore,

x(P2(e)a) = λax(e).

It follows that

λa = x(a).

Proposition 6.21 Let A be a Type I JBW*-algebra with centralizer Z(A), let e be

an abelian projection in A with central support IdA and Peirce-2 projection P2(e). Let

µ be a character of Z(A) with kernel Iµ, let x be the functional µ ◦ τe, let kerx be the

kernel of x in A and let kn(kerx) be the norm central kernel of x in A. Let K be the

set

K = {a ∈ A : P2(e)Q(b)a ∈ Kµ ∀b ∈ A},

let J be the set

J = {a ∈ A : x(Q(b)a) = 0 ∀b ∈ A}

and let Kµ be the ideal

Kµ = IµA.

Then

Kµ = K = J = kn(kerx).

Proof. Let a be an element of Kµ. Since Kµ is an ideal, it follows from Theorem 4.1

that for all b in A, P2(e)Q(b)a lies in Kµ. Hence a lies in K and Kµ is a subset of K.

Let a be an element of K. By Proposition 6.20, for all b in A, P2(e)Q(b)a lies in

kerx, and therefore

x(Q(b)a) = x(P2(e)Q(b)a) = 0.

It follows that a lies in J and K is a subset of J .

By Theorem 4.15, J coincides with kn(kerx).
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Let a be an element of J . Then by Proposition 6.20, for all b in A,

P2(e)Q(b)a+Kµ = x(Q(b)a)(e+Kµ) = 0,

and hence P2(e)Q(b)a lies in Kµ. Therefore a lies in K and J is a subset of K.

Let v be a projection in K. By the comparison theorem of projections [51], 5.2.13,

there exists symmetries s and t in A and a projection P in Z(A) such that

Q(s)(Pe) ≤ Pv Q(t)(P⊥v) ≤ P⊥e.

Then

Pe = P2(e)Pe ≤ P2(e)Q(s)Pv

and since Pv lies in K, P2(e)Q(s)Pv and hence Pe lie in Kµ. Assume for a contra-

diction that P does not lie in Iµ. Then I − P lies in Iµ and hence e− Pe lies in Kµ.

This implies that e lies in Kµ, and by Corollary 6.18, IdA, the central support of e,

lies in Iµ, providing the required contradiction. Therefore P lies in Iµ, from which it

follows that Pv lies in Kµ. Since it is also the case that

P⊥v ≤ Q(t)P⊥e ≤ Q(t)e,

P⊥v is a projection in the Peirce-2 space A2(Q(t)e) of the projection Q(t)e of A.

Hence

P⊥v = Q(Q(t)e)P⊥v

= Q(t)Q(e)Q(t)P⊥v

Since P⊥v lies in K, P2(e)Q(t)P⊥v and hence P⊥v lie in Kµ. Therefore,

v = Pv + P⊥v

lies in Kµ. The norm-closed ideal K is generated by its projections, and hence K is
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a subset of Kµ. This completes the proof.

Proposition 6.22 is now immediate from Proposition 6.20 and Proposition 6.21.

Proposition 6.22 Let A be a Type I JBW*-algebra. Then every Glimm ideal in A

is primitive.

Lemma 6.23 Let A be a JB*-triple and let u be a complete tripotent with Peirce-2

space A2(u), such that every Glimm ideal of the JB*-algebra A2(u) is primitive. Then

every Glimm ideal of A is primitive.

Proof. Let G be a Glimm ideal of A. By Proposition 6.6, G∩A2(u) is a Glimm ideal

of A2(u), and therefore a primitive ideal of A2(u). By Proposition 6.2, A possesses a

primitive ideal P such that P ∩A2(u) coincides with G∩A2(u). By Corollary 6.4, G

and P coincide.

The main result of this section is now immediate from Proposition 6.22, Lemma

6.23 and Theorem 6.13.

Theorem 6.24 Let A be a Type I JBW*-triple. Then every Glimm ideal of A is a

primitive ideal of A and A is densely standard.
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Chapter 7

Factorial Functionals and Primal

Ideals

In this chapter, the study of factorial functionals on JB*-triples is initiated. After

some technical results are established, the connections between factorial functionals

and primal ideals are explained. A number of applications to JB*-triple structure

theory are given, as described below.

In Section 7.1, the definition of a factorial functional on an arbitrary Banach

space is given and this definition is interpreted in terms of the ideal and local order

structure of a JB*-triple. In Section 7.2, a special class of factorial functionals, the

Type I factorial functionals, is defined. This class is accessible because its elements can

be constructed from σ-convex sums of quasi-equivalent pure functionals. In Section

7.3, an important technical result is established, characterising the primal ideals of

a JB*-algebra in terms of w*-density properties of the factorial states in faces of the

state space. In Theorem 7.13, the important part of this result is then extended

to JB*-triples. Whilst Theorem 7.13 is a pleasing result in its own right, the real

interest comes from the applications explored in the remainder of this chapter. The

first is described in Section 7.4, where the relationship between factorial functionals

and primal ideals is illustrated by the existence of a natural map from the set of

factorial functionals into the primal ideals. In Section 7.5 some more properties of

this mapping are explored. In Section 7.6 the use of Theorem 7.13 to decompose a
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key stage in the proof of the Glimm Stone-Weierstrass Theorem for JB*-triples is

discussed. The results of this section include a characterisation of the prime JB*-

triples and necessary conditions for a JB*-triple to be anti-liminal.

In Section 7.8 a characterisation of the pure functional space of a continuous

JBW*-triple in terms of the characters of the centralizer is presented. To achieve

this, a map from the dual space of a JB*-triple into the dual space of its centralizer

is introduced and studied in Section 7.7. This map takes the place of the restriction

of positive functionals to the centre in the unital C*-algebra case.

7.1 Definitions

Let A be a Banach space with dual space A∗ having unit ball A∗1 with surface ∂A∗1.

An element x of ∂A∗1 is said to be factorial if the smallest L-summand Lx containing

x, is a factor. The elements of ∂eA
∗
1, the set of pure functionals of A, are important

examples of factorial functionals. The set of factorial functionals is denoted by ∂fA
∗
1.

Two elements x and y in A∗ are said to be quasi-equivalent if Lx and Ly coincide.

Factorial functionals have been studied studied for real Banach spaces in [28] and

for GM-spaces in [27] under the name globally primary functionals. The main result

of this section (Theorem 7.3) describes some equivalent conditions for functionals

to be factorial. In particular, it will be shown that, for a JB-algebra, the factorial

functionals are the locally primary functionals studied by Wils [78]. The results

will be proved for normal functionals on a JBW*-triple, greater generality than is

required for this purpose. The discussion begins with some information about the

order structure of the predual of a JBW-algebra.

Let V be a partially ordered vector space, let EndV be the algebra of all linear

maps T : V 7→ V and define the ideal centre of V , denoted by O(V ), to be the

subalgebra

O(V ) = {T ∈ EndV : −λIdV ≤ T ≤ λIdV for some λ ∈ R+}.
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Proposition 7.1 Let A be a JBW-algebra with predual A∗, let O(A∗) be the ideal

centre of A∗ and let Z(A) be the centralizer of A. For T in O(A∗), let T ∗ be the dual

operator on A. Then the map T 7→ T ∗ is an isometric isomorphism of O(A∗) onto

Z(A).

Proof. The result is the combination of [2], 5.7, 6.11, 6.12.

Proposition 7.2 Let A be a JBW-algebra, let x be a faithful normal state, let A∗ be

the predual of A, let A+
∗ be the cone of positive elements of A∗ and let O(A∗) be the

ideal centre of A∗. For an element x in A+
∗ , let Vx be the subspace of A∗ generated by

the face of A+
∗ generated by x and let O(Vx) be the ideal centre of Vx. Then, the map

T 7→ T |Vx is an isometric order and algebra isomorphism from O(A∗) onto O(Vx).

Proof. Let A∗ be the dual of A, let A∗∗ be the bidual of A and let A∗+ be the cone of

positive elements in A∗. By Theorem 4.8, there exists an M-projection PA on A∗∗ such

that A∗ may be canonically identified with the L-summand (PA)∗A
∗ of A∗. Under

this identification, Vx is identified with the subspace of A∗ generated by the face of

A∗+ generated by x. Define the projection Px of O(A∗), the ideal centre of A∗, by

Px =
∧
{P ∈ O(A∗) : Px = x}.

By [29], Lemma 3, Corollary 4 and [69], Theorem 5.1, the map T 7→ T |Vx is an

isometric algebraic and order isomorphism from PxO(A∗) onto O(Vx). Now, PA−Px
is a projection in PAO(A∗), and, by Proposition 7.1, there exists a projection P in

Z(A), the centralizer of A, such that, for all y in A∗,

(P1)(y) = 1((PA − Px)y).

In particular,

(P1)2(x) = 1((PA − Px)x) = 1(0) = 0.

Since x is faithful on A, P1 equals 0. It follows that PA and Px coincide and the

proof is complete.
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As Theorem 7.3 shows, there are many equivalent ways of considering the central

decompositions associated with a normal functional on a JBW*-triple, and hence

many equivalent conditions for a functional to be factorial.

Theorem 7.3 Let A be a JBW*-triple and let x be an element of unit norm in

A∗,1, the unit ball of the predual A∗ of A. Let Lx be the smallest L-summand of A∗

containing x, let e(x) be the support tripotent of x, let A2(e(x)) be the Peirce-2 space

of e(x), let A2(e(x))∗ be its predual and let c(A2(e(x))) be its central hull. Let V +
x

be the face of the positive cone of A2(e(x))∗ generated by x, let Vx be the order unit

space generated in A2(e(x))∗ by V +
x and let O(Vx) be the ideal centre of Vx. For each

projection p in A2(e(x)), let {p}′ be the norm-closed face

{p}′ = {y ∈ A∗,1 : y(p) = 1}

of A∗,1. Then Lx coincides with the smallest L-summand of A∗ containing x and there

are order-isomorphisms between the following complete Boolean algebras:

(i) the set of L-projections of Lx;

(ii) the set of M-projections of c(A2(e(x)));

(iii) the set of M-projections of A2(e(x));

(iv) the set of central projections of A2(e(x));

(v) the set of split faces of {e(x)}′;

(vi) the set of idempotents of O(Vx).

Proof. By Theorem 4.8, A∗ is an L-summand of A∗ containing x and therefore Lx

is the smallest L-summand of A∗ containing x. It follows from Theorem 4.7 that

the dual space of Lx may be identified with c(A2(e(x))). Hence, the map P 7→

P ∗ is an isomorphism from (i) to (ii) (Proposition 3.5). By Theorem 4.5, the map

T 7→ T |A2(e(x)) is a *-isomorphism from Z(c(A2(e(x)))), the centralizer of c(A2(e(x))),

onto Z(A2(e(x))), the centralizer of A2(e(x)). Hence, the map P 7→ P |A2(e(x)) is
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an isomorphism from (ii) to (iii). By Proposition 4.4, the map P 7→ Pe(x) is an

isomorphism from (iii) to (iv). When A2(e(x))∗ is identified with the subspace {y ∈

A∗ : ‖y|A2(e(x))‖ = ‖y‖} of A∗, {e(x)}′ is identified with the normal state space

of the JBW*-algebra A2(e(x)). The isomorphism from (iv) to (v) was described

in Proposition 2.10 as the map p 7→ {p}′. Finally, let A2(e(x))∗,sa be the self-

adjoint part of the predual A2(e(x))∗ of A2(e(x)). By Proposition 7.2, O(Vx) may

be identified with O(A2(e(x))∗,sa), the ideal centre of A2(e(x))∗,sa and by Proposition

7.1, O(A2(e(x))∗,sa) may be identified with Z(A2(e(x)))sa, the self-adjoint part of the

centralizer of A2(e(x)). Thus (vi) is isomorphic to (iii).

It follows from the definition that a functional x of unit norm on a JB*-triple A is

factorial if and only if the Boolean algebras of Theorem 7.3 are trivial. In particular,

x is factorial if and only if it is (locally) primary in the sense of Wils [78] in the

partially ordered real vector space A∗∗2 (e(x))∗,sa.

Example 7.4 Let A be an abelian JB*-triple. Then

∂eA
∗
1 = ∂fA

∗
1

Proof. Let x be an element of ∂fA
∗
1. Then x lies in ∂eA

∗
1 since

A∗∗2 (e(x)) = Z(A∗∗2 (e(x))) ∼= C.

7.2 Type I factorial states

The Type I factorial functionals are of particular importance in the theory because

they include a class of functionals which is w*-dense in all the factorial functionals

(Corollary 7.16) yet are easily constructed from pure functionals (Proposition 7.10).

A JBW*-triple is said to be of Type I if it possesses an abelian tripotent with
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central support equal to the identity operator. A JBW*-triple factor is of Type I if

and only if it possesses a minimal tripotent.

Lemma 7.5 Let A be a JBW*-algebra which is a factor. Then A is a Type I JBW*-

triple if and only if A possesses a minimal projection.

Proof. Suppose that A possesses a minimal tripotent u with Peirce-2 space A2(u).

Then, by [30], Theorem 2.3, there exists a projection p of A such that

A2(u) = Cu = Cp = pAp.

Therefore p is a minimal projection in A. The converse is obvious.

A JBW*-triple is said to be atomic if it is the w*-closed linear span of its minimal

tripotents.

Lemma 7.6 Let the JBW*-triple A be a non-zero factor. Then A is of Type I if and

only if A is atomic.

Proof. Let A be a factor of Type I. Since A contains a minimal tripotent, by [44],

Theorem 2, A contains a non-zero w*-closed atomic ideal J . Since A is a factor, A

coincides with J and is atomic. Conversely, if A is an atomic factor, it possesses a

minimal tripotent and is therefore a factor of Type I.

Lemma 7.7 Let A be a JBW*-triple and let J be a w*-closed inner ideal of A. Then

c(J), the central hull of J , is a Type I factor if and only if J is a Type I factor.

Proof. Suppose that c(J) is of Type I, and let v be any non-zero tripotent of

J . Since c(J) is the w*-closed linear span of its minimal tripotents, there exists a

minimal tripotent u in c(J) such that P2(v)u is non-zero. Furthermore, P2(v)u lies

in J , and, by [44], Proposition 6, is a scalar multiple of a minimal tripotent. The

converse is obvious.

Let A be a JBW*-algebra factor and let k be a cardinal number. Then A is said

to be of Type Ik if the unit is the sum of k minimal projections. The next lemma

follows from [51], Section 5.3 and [35], Theorem 3.2.
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Lemma 7.8 Let A be a JBW*-triple, let x be a normal functional on A of unit norm

such that the Peirce-2 space A2(e(x)) of the support tripotent e(x) of x is a factor of

Type I and let CardN be the cardinality of N. Then there exists a unique element k

of N ∪ {CardN} such that A2(e(x)) is of Type Ik.

In the situation described in Lemma 7.8, x is said to be a factorial functional of

Type Ik.

In [12], Archbold and Batty defined a state x of the C*-algebra A to be of Type

In if πx(A)
′

is a Type In W*-algebra, where (πx, Hx, ξx) is the GNS construction for

x and πx(A)
′

is the commutant of πx(A) in B(Hx), the W*-algebra of bounded linear

operators on Hx. To see the connection with the definition given here, recall that, for

each element Γ in πx(A)
′
sa there exists an element yΓ in Vx defined by

yΓ(a) =< Γπx(a)ξx, ξx >x,

the map Γ 7→ yΓ is an order isomorphism from πx(A)
′
sa onto Vx and the map Γ 7→ e(yΓ)

is an injection from the minimal elements of the atomic lattice P(πx(A)
′
sa) into the

minimal elements of the atomic lattice P(A∗∗2 (e(x))).

The remainder of this section focuses on describing the Type I factorial functionals.

Let (xλ)λ∈Λ be a family of elements in a Hausdorff topological vector space (X, τ).

Let F be the set of finite subsets of Λ, directed by set inclusion. Then (
∑

λ∈F xλ)F∈F

is a net in X. When this net has a limit, the family (xλ)λ∈Λ is said to be summable

and the necessarily unique limit is said to be the sum, denoted by
∑τ

λ∈Λ xλ. When

Λ equals N, the series converges to the sum. We say that an element x of X is a

σ-convex sum of elements (xj)
∞
j=1 in X if it has the form

x =
∞∑
j=1

λjxj

where (λj) is a sequence of positive real numbers with sum 1.

Let (uλ)λ∈Λ be a family of pairwise orthogonal tripotents in a JBW*-triple. Then,
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by [11], Proposition 3.4 (iv), for each finite subset F of Λ

∨
λ∈F

uλ =
∑
λ∈F

uλ

and, by [11], Proposition 3.8 (iii), the supremum and sum of the family exist and

satisfy ∨
λ∈Λ

uλ =
∑
λ∈Λ

uλ.

Let A be a JBW*-triple with predual A∗. Elements x and y in A∗ with sup-

port tripotents e(x) and e(y) in A are said to be L-orthogonal if e(x) and e(y) are

orthogonal.

Lemma 7.9 Let A be a JBW*-triple with pre-dual A∗ and let k be either the cardi-

nality of N or an element of N. Let (xj)
k
j=1 be a sequence of elements in ∂A∗,1, the

surface of the unit ball of A∗, let (λj)
k
j=1 be a sequence of real numbers in the interval

(0, 1) summing to 1 and such that the series
∑k

j=1 λjxj converges to an element x of

A∗. For each j in 1, . . . , k, let e(xj) be the support tripotent of xj and let e(x) be the

support tripotent of x. Then
∨k
j=1 e(xj) exists if and only if x has unit norm. In this

case

e(x) =
k∨
j=1

e(xj).

Furthermore, if the sequence (xj) is pairwise L-orthogonal then

e(x) =
k∑
j=1

e(xj).

Proof. For each tripotent u of A, let {u}′ be the proper norm-closed face

{u}′ = {y ∈ A∗,1 : y(u) = 1}

of A∗,1. Suppose that an upper bound u for the sequence (e(xj)) exists. Define
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sequences (αn) and (yn) for n ≤ k by

αn =
n∑
j=1

λj yn =
n∑
j=1

λjxj.

Then, the sequence (yn/αn) norm-converges to x and lies in the convex hull of

x1, . . . , xn, which is a subset of {u}′ by Theorem 2.20. Hence x lies in {u}′ and

has unit norm. Furthermore, again by Theorem 2.20, u dominates e(x). Conversely,

suppose that x is of unit norm. For any l between 1 and k, define,

zl =
k∑
j=1
j 6=l

λj
1− λl

xj.

Then, as a σ-convex sum of elements of ∂A∗,1, zl lies in A∗,1 and

x = λlxl + (1− λl)zl

Since x lies in the face {e(x)}′ of A∗,1, it follows that xl and zl also lie in {e(x)}′.

Thus, by Theorem 2.20, e(xl) is dominated by e(x). It follows that e(x) is an upper

bound for e(x1), . . . , e(xk). Combining this fact with the first part of the proof,

e(x) =
k∨
j=1

e(xj).

If the sequence (xj) is pairwise L-orthogonal, then by [11],

e(x) =
k∑
j=1

e(xj).

The following result is the JBW*-algebra equivalent of [12], Proposition 2.1.

Proposition 7.10 Let A be a JBW*-triple with predual A∗ and let x be a normal

functional of A of unit norm. Let e(x) be the support tripotent of x, let A2(e(x)) be
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the Peirce-2 space of e(x) and let ∂e{e(x)}′ denote the set of extreme points of the

norm-closed face

{e(x)}′ = {y ∈ A∗,1 : y(e(x)) = 1}

of the unit ball A∗,1 of A. Then the following results hold.

(i) If the JBW*-algebra A2(e(x)) is a factor of Type Ik for some k a natural number

or the cardinality of N, then there exists k elements (xj)
k
j=1 of ∂e{e(x)}′ such

that x is the convex or σ-convex sum of the sequence (xj)
k
j=1 and the (xj)

k
j=1 are

quasi-equivalent to x.

(ii) Let (xj) be a sequence of quasi-equivalent elements of ∂eA∗,1 such that x is the

σ-convex sum of (xj). Then x is quasi-equivalent to each element of (xj), the

set S of elements of (xj) with non-zero coefficient is a subset of ∂e{e(x)}′ and

A2(e(x)) is a factor of Type In for some cardinal n less than or equal to the

cardinality of S.

Proof. (i) Suppose that A2(e(x)) is a Type Ik factor. Then, by Lemma 7.6, A2(e(x))

is an atomic JBW*-algebra, and, by [3], Proposition 5.6, there exists a sequence (yj)

of pairwise orthogonal elements of ∂e{e(x)}′ and a sequence (λj) of elements of [0, 1]

summing to 1, such that x is the σ-convex sum

x =
∞∑
j=0

λjyj.

For j in N, let e(yj) be the support tripotent of yj in A. By Lemma 7.9,

e(x) =
∑

j∈N,λj 6=0

e(yj)

and since this is a sum of minimal projections, it follows from Lemma 7.8 that the

sum has k terms. Let (xj)
k
j=1 be the subsequence of (yj) with non-zero coefficients.

Since c(A2(e(x))), the central hull of A2(e(x)), is a factor, for each j in 1, . . . , k,

c(A2(e(xj))), the central hull of A2(e(xj)), coincides with c(A2(e(x))) and xj is quasi-

equivalent to x. Thus (xj)
k
j=1 is the desired sequence.
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(ii) Let (xj) be a sequence of quasi-equivalent elements of ∂eA∗,1 and let (λj) be

a sequence of elements of [0, 1] summing to 1, such that x is the σ-convex sum

x =
∞∑
j=0

λjxj.

Let L be the minimal L-summand of A∗ containing the sequence (xj). Then x is an

element of L, and by Theorem 7.3, A2(e(x)) is a factor. By Lemma 7.9, for each j in

N such that λj is non-zero, xj lies in ∂e{e(x)}′, and e(xj), the support tripotent of xj

is a projection in the JBW*-algebra A2(e(x)). By Lemma 7.9,

e(x) =
∨
{e(y) : y ∈ S}.

By Lemma 7.8, A2(e(x)) is a Type In factor for n an element of N or the cardinality

of N, and by Lemma 7.6, A2(e(x)) is atomic. Let k be the cardinality of the set S.

If k is equal to the cardinaltiy of N, then, necessarily, n ≤ k. If k is an element of N,

then, [3], Lemma 5.1 implies that n ≤ k.

7.3 Primal ideals in JBW*-triples

In this section a characterisation of primal ideals in JB*-algebras in terms of the

factorial state space is given. Part of this characterisation is then extended to JB*-

triples. In addition to being of interest in their own right, the results of this section

have many important consequences which are explored in subsequent sections.

Theorem 7.11 Let A be a JB*-algebra and let K be a norm-closed ideal of A. Let

S(A) be the state space of A, let ∂fS(A) be the set of factorial states and let ∂ffS(A) be

the set of factorial states of Type In with n finite. Let K◦ be the topological annihilator

of K. Then the following are equivalent:

(i) K is primal;

(ii) S(A) ∩K◦ ⊆ ∂ffS(A)
w∗

;
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(iii) S(A) ∩K◦ ⊆ ∂fS(A)
w∗

.

Proof. (i)⇒(ii): Let ∂eS(A) denote the pure state space of A and for any element y

of A∗, let Jy denote the norm central kernel of y. For j equal to 1, . . . , n, let xj be an

element of ∂eS(A)∩K◦ and let x be the convex sum
∑n

j=1 λjxj. Let U be a w*-open

convex neighbourhood of the origin in A∗ and for j equal to 1, . . . , n, let the subset

Vj of PrimA be given by

Vj = {Jy : y ∈ ∂eS(A), y − xj ∈ U}.

By [50], Theorem 4.1, Vj is open in PrimA. Let Jj be the norm-closed ideal of A

such that

Vj = {P ∈ PrimA : Jj 6⊆ P}.

Then, for j equal to 1, . . . , n, xj is non-zero on Jj and therefore Jj is not a subset of

K. Since K is primal, this implies that the ideal

J =
n⋂
j=1

Jj

is non-zero. Let w be a pure state of J , let e(w) be its support projection in A∗∗ and

let c(A∗∗2 (e(w))) be the central hull of the Peirce-2 space generated by e(w). For j

equal to 1, . . . , n, there exists a pure state wj of A such that wj lies in xj +U and Jwj

coincides with Jw. By [50], Theorem 4.1, ∂eS∗(c(A
∗∗
2 (e(w)))), the set of normal pure

states of c(A∗∗2 (e(w))), is w*-dense in ∂eS(A) ∩ (Jw)◦. Thus, for j equal to 1, . . . , n,

the existence of a pure state wj of A in (xj + U) ∩ (Jw)◦ implies the existence of a

pure state yj of A in (xj + U) ∩ ∂eS∗(c(A∗∗2 (e(w)))). By Proposition 7.10, the state

y =
n∑
j=1

λjyj
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is an element of ∂ffS(A), lying in U+x since U is convex. Since A∗ is a locally convex

topological vector space in the w*-topology, this shows that

conv(∂eS(A) ∩K◦) ⊆ ∂ffS(A)
w∗
.

Applying the Krein-Milman theorem to the w*-compact convex set A∗+,1 ∩ K◦, (ii)

follows.

(ii)⇒(iii): This is immediate since ∂ffS(A) is contained in ∂fS(A).

(iii)⇒(i): Suppose that J1, . . . , Jn are norm-closed ideals of A such that no Jj is

contained in K. Then, for each j equal to 1, . . . , n, there exists an element aj in J+
j

such that aj does not lie in K and xj in S(A)∩K◦ such that xj(aj) is strictly positive.

Define an element x in S(A) ∩K◦ by

x =
1

n

n∑
j=1

xj.

Then, for j equal to 1, . . . , n, x(aj) is strictly positive and, by hypotheses, there exists

an element y in ∂fS(A) such that, for j equal to 1, . . . , n, Jj is not contained in ker y.

Since y is factorial, this implies that (J◦◦j )⊥ is contained in k(A∗∗0 (e(y))). Thus

c(A∗∗2 (e(y))) ∩
n⋂
j=1

Jj

w∗

=
n⋂
j=1

[
c(A∗∗2 (e(y))) ∩ Jj

w∗
]

=
n⋂
j=1

c(A∗∗2 (e(y)))

= c(A∗∗2 (e(y))).

Hence,
⋂n
j=1 Jj cannot be zero, and K is primal, as required.

In the special case of C*-algebras, Theorem 7.11 reduces to [6], Theorem 3.3.

The argument of Theorem 7.11 does not immediately translate to the JB*-triple

case. The proof that (i) implies (ii) fails because the quasi-equivalent pure states

with convex sum y may not lie in the same face, and thus y may not be of unit norm.
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The proof that (iii) implies (i) fails because, in the absence of positivity, the sum x

may be zero on some aj. The method of solution is to reduce the problem from the

JB*-triple A to an inner ideal of A which is a JB*-algebra. First, it is shown that

primality is preserved when passing to inner ideals.

Proposition 7.12 Let A be a JB*-triple and let J be a primal norm-closed ideal.

Let I be a norm-closed inner ideal of A not contained in J . Then I ∩ J is a primal

norm-closed ideal of I.

Proof. Let J1, . . . , Jn be norm-closed ideals of I with zero intersection. Then, by

Proposition 4.6 (ii),

(
n⋂
j=1

cn(Jj)) ∩ I =
n⋂
j=1

(cn(Jj) ∩ I)

=
n⋂
j=1

Jj

= {0} .

Thus, by Proposition 4.6, (i)

∩nj=1cn(Jj) ∩ cn(I) = cn((∩nj=1cn(Jj)) ∩ I)

= {0} .

Since I is not contained in J , neither is cn(I). Since J is primal, cn(Jj) must be a

subset of J for some j. Using Proposition 4.6 (ii),

Jj = cn(Jj) ∩ I ⊆ J ∩ I.

Hence, J ∩ I is primal in I.

Theorem 7.13 Let A be a JB*-triple and let J be a primal ideal of A, with topological

annihilator J◦. Then, the set ∂ffA
∗
1 of finite factorial functionals of A, is w*-dense in

∂J◦1 , the surface of the unit ball of J◦.
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Proof. Let x be an element of ∂J◦1 for which there exists an element a in A1 be

such that x(a) equals 1. Let r(a) be the support tripotent of a in A∗∗, let P2(r(a))

be the Peirce-2 projection of r(a) and let A∗∗2 (r(a)) be the Peirce-2 space of r(a) in

A∗∗. Let In(a) be the smallest norm-closed inner ideal of A containing a. Then, by

Proposition 2.22, In(a) is a JB*-subalgebra of its bidual A∗∗2 (r(a)). Since x(r(a))

equals 1, x restricts to a state of In(a), vanishing on J ∩ In(a). By Proposition 7.12,

J ∩ In(a) is a primal ideal of the JB*-algebra In(a). Applying Theorem 7.11, there

exists a net (xλ)λ∈Λ in ∂ffS(In(a)), w*-convergent to x. Clearly (xλ ◦ P2(r(a)))λ∈Λ

is a net in ∂ffA
∗
1 w*-convergent to x. The result now follows by the Bishop-Phelps

Theorem [14].

7.4 Relationship between factorial functionals and

primal ideals

Before we can consider the relationship between a functional x on a JB*-triple A and

kn(ker∗ x), the norm central kernel of x in A, it is necessary to investigate how x

relates to the central kernel k(ker∗ x) in A∗∗. That is the purpose of this section.

Proposition 7.14 Let x be a factorial functional on a JB*-triple A. Then the norm

central kernel kn(ker∗ x) of x, is prime.

Proof. Let e(x) be the support tripotent of x, and let c(A∗∗2 (e(x))) be the central

hull of the Peirce-2 space of e(x) in A∗∗. Since c(A∗∗2 (e(x))) is a factor, k(A∗∗0 (e(x))),

the central kernel of the Peirce-0 space of e(x), is a maximal element of the complete

Boolean algebra of w*-closed ideals of A∗∗, and by Corollary 4.19 and Corollary 6.16,

kn(ker∗ x) = k(A∗∗0 (e(x))) ∩ A

is prime in A.
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Corollary 7.15 Let A be a JB*-triple and let ∂fA
∗
1

w∗
be the w*-closure of the set of

factorial functionals of A. Let x be an element of ∂A∗1, the surface of the dual unit

ball A∗1 in the dual A∗ of A, and let kn(ker∗ x) be the norm central kernel of x. Then,

the following are equivalent:

(i) x lies in ∂fA
∗
1

w∗
;

(ii) kn(ker∗ x) is primal.

Proof. (i)⇒(ii): Let J1, . . . , Jn be norm-closed ideals of A such that no Jj is contained

in kn(ker∗ x). Then, for j equal to 1, . . . , n, there exists an element aj in Jj such that

x(aj) is non-zero. By hypothesis there exists an element y in ∂fA
∗
1 non-zero on each

aj. Thus no Jj is contained in kn(ker∗ y). Since, by Proposition 7.14, kn(ker∗ y) is

prime, ∩nj=1Jj is not contained in kn(ker∗ y). In particular, ∩nj=1Jj is non-zero, and,

therefore, kn(ker∗ x) is primal.

(ii)⇒(i): Let J be the primal ideal kn(ker∗ x). Then x lies in ∂J◦1 and the result

follows from Theorem 7.13.

Corollary 7.15 had previously been proved in the special case when A is a C*-

algebra and x a state ([6], Section 3).

Corollary 7.16 Let A be a JB*-triple. Then ∂ffA
∗
1 is w*-dense in ∂fA

∗
1.

Proof. Let x be an element of ∂ffA
∗
1 and let J be the ideal kn(ker∗ x). Then x lies

in ∂J◦1 and by Proposition 7.14, J is prime, and, hence, primal. Applying Theorem

7.13 gives the result.

7.5 Additivity

Let A be a JB*-triple, let ∂fA
∗
1

w∗
be the w*-closure of the set of factorial functionals

on A, let PrimalA be the set of primal ideals of A and for x in ∂fA
∗
1

w∗
let kn(kerx) be

the norm central kernel of x. In the previous section, Theorem 7.13 was used to show

that the map Ψ : x 7→ kn(kerx) maps ∂fA
∗
1

w∗
into PrimalA. Before proceeding to give
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more applications of Theorem 7.13 in subsequent sections, some further observations

about the mapping Ψ are made. It is shown that Ψ has the curious property of

mapping finite sums into intersections. The equivalent results for JB*-algebras can

easily be deduced using positivity, but the JB*-triple proof requires results from the

theory of central hulls and central kernels developed in [41], [39] and [40].

Lemma 7.17 Let A be a JBW*-triple with pre-dual A∗ and let ∂eA∗,1 be the set

of normal pure functionals on A. For an element x in A∗, let e(x) be the support

tripotent, let A2(e(x)) be the Peirce-2 space corresponding to e(x) and let c(A2(e(x)))

be the central hull of A2(e(x)). Let F be a finite collection of quasi-equivalent elements

of ∂eA∗,1 and, for each x in F , let αx be a non-zero element of C such that
∑

x∈F αxx

is non-zero. Then

A2(e(
∑

x∈Fαxx)) ⊆
∨
x∈F

A2(e(x))

and

c(A2(e(
∑

x∈Fαxx))) = c(∨x∈FA2(e(x))).

is a factor.

Proof. Let K denote the w*-closed inner ideal ∨x∈FA2(e(x)). Then x lies in K∗ for

all x in F . Thus
∑

x∈F αxx lies in K∗, e(
∑

x∈F αxx) lies in K and

A2(e(
∑

x∈Fαxx)) ⊆ ∨x∈FA2(e(x)).

Let J denote the factor c(A2(e(x))) for some, and, by quasi-equivalence, all, elements

x in F . Then e(x) lies in J for all x in F and

A2(e(
∑

x∈Fαxx)) ⊆ ∨x∈FA2(e(x)) ⊆ J.

Since J is a factor and
∑

x∈F αxx is non-zero,

c(A2(e(
∑

x∈Fαxx))) = c(∨x∈FA2(e(x))) = J,
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thereby completing the proof.

Theorem 7.18 Let A be a JBW*-triple and adopt the notation of Lemma 7.17. Let

F be a finite collection of elements of ∂eA∗,1 and for each x in F , let αx be a non-zero

element of C such that, for every non-empty subset E of F ,
∑

x∈E αxx is non-zero.

Then,

c(A2(e(
∑

x∈Fαxx))) = c(∨x∈FA2(e(x))).

Proof. Let Λ denote the collection of quasi-equivalence classes of F . For λ in Λ

define xλ to be
∑

x∈λ αxx. Define y by

y =
∑

x∈Fαxx =
∑

λ∈Λxλ.

Since the set {e(xλ) : λ ∈ Λ} is pairwise orthogonal, by [39], Theorem 5.4 and Lemma

5.5,

e(y) =
∑

λ∈Λe(xλ).

Thus for each µ in Λ, e(y) − e(xµ) is a tripotent orthogonal to e(xµ). Therefore

e(xµ) ≤ e(y) and, using Lemma 7.17,

∨
λ∈Λ

A2(e(xλ)) = A2(e(y)) ⊆
∨
x∈F

A2(e(x)).

Thus

c(∨λ∈ΛA2(e(xλ))) = c(A2(e(y))) ⊆ c(∨x∈FA2(e(x))).

By [40] and Lemma 7.17,

c(∨λ∈ΛA2(e(xλ))) = ∨λ∈Λc(A2(e(xλ)))

= ∨λ∈Λc(∨x∈λA2(e(x)))

= c(∨λ∈Λ(∨x∈λA2(e(x))))

= c(∨x∈FA2(e(x))).
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Hence,

c(A2(e(y))) = c(∨x∈FA2(e(x))),

as required.

Corollary 7.19 Let A be a JBW*-triple with pre-dual A∗ and let ∂eA∗,1 be the set

of normal pure functionals on A. For x in A∗, let kerx be the kernel of x in A and

let k(kerx) be the central kernel of x in A. Let F be a finite collection of elements

of ∂eA∗,1 and for each x in F , let αx be a non-zero element of C such that, for every

non-empty subset E of F ,
∑

x∈E αxx is non-zero. Then,

k(ker
∑

x∈Fαxx) =
⋂
x∈F

k(kerx).

Proof. For x in A∗ let e(x) be the support tripotent, let A2(e(x)) be the Peirce-2

space corresponding to e(x) and let A0(e(x)) be the Peirce-0 space corresponding to

e(x). For a w*-closed subspace L of A, let c(L) denote the central hull of L and

let k(L) denote the central kernel. Let y denote
∑

x∈F αxx. Using Corollary 4.17,

Theorem 4.2, Lemma 2.8 and Theorem 7.18,

k(ker y) = k(A0(e(y))) = c(A2(e(y)))⊥ = c(∨x∈FA2(e(x)))⊥.

Using Corollary 4.17, Theorem 4.2 and Lemma 2.8 again with [40], equation 3.2,

c(∨x∈FA2(e(x)))⊥ = k(∩x∈FA0(e(x))) =
⋂
x∈F

k(A0(e(x))) =
⋂
x∈F

k(kerx),

as required.

7.6 Prime and antiliminal JB*-triples

A JB*-triple A is said to be prime if the zero ideal is a prime ideal of A. The socle of

a JB*-triple A is the norm-closed ideal K(A) generated by the minimal tripotents of
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A. A key step in the proof of the Glimm Stone-Weierstrass theorem for JB*-triples

([67], Theorem 6.2) is the following result.

Theorem 7.20 ([21], Theorem 5.6) Let A be a non-zero JB*-triple, let A∗1 be the

dual unit ball of A and let ∂eA
∗
1 be the set of pure functionals of A. Then ∂eA

∗
1 is

w*-dense in A∗1 if and only if A is an infinite dimensional Hilbert space, an infinite

dimensional spin factor or A is prime with zero socle.

Let A be a JB*-triple with bidual A∗∗. For each pure functional x, let c(A∗∗2 (e(x)))

be the central hull of the Peirce-2 space of the support tripotent e(x) of x in A∗∗ and let

(πx, c(A
∗∗
2 (e(x)))) be the Cartan factor representation corresponding to x. The JB*-

triple A is said to be liminal if K(c(A∗∗2 (e(x)))), the socle of c(A∗∗2 (e(x))), coincides

with πx(A) for each pure functional x of A, and postliminal if K(c(A∗∗2 (e(x)))) is

a subset of πx(A) for each pure functional x of A. The JB*-triple A is said to be

antiliminal if it possesses no non-zero liminal ideals. The JB*-triple A is antiliminal

if and only if it possesses no abelian elements.

In a prime JB*-triple, an element is abelian if and only if it is a scalar multiple

of a minimal tripotent ([21], Remark 3.6). Thus the condition that A is prime with

zero socle is equivalent to the condition that A is prime and antiliminal. In the light

of Theorem 7.20, it is natural to ask whether factorial functionals can be used to

separately characterise the prime JB*-triples and the antiliminal JB*-triples. In the

C*-algebra setting, this question has already been answered ([6], Corollary 3.4, [12],

Theorem 3.4). For JB*-triples, the preceding results on factorial functionals may be

applied to obtain the following characterisation.

Proposition 7.21 Let A be a JB*-triple, let ∂fA
∗
1 be the set of factorial functionals

and let ∂ffA
∗
1 be the set of factorial functionals of Type In where n is finite. Then the

following conditions are equivalent:

(i) A is prime;

(ii) ∂A∗1 ⊆ ∂ffA
∗
1

w∗
;

(iii) ∂A∗1 ⊆ ∂fA
∗
1

w∗
.
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Proof. (i)⇒(ii) Take J to be the zero ideal in Theorem 7.13.

(ii)⇒(iii) This is immediate.

(iii)⇒(i) Let A be such that ∂A∗1 ⊆ ∂ffA
∗
1

w∗
and assume that J1 and J2 are non-

zero norm-closed ideals with zero intersection. Then, there exists an element x in ∂A∗1

non-zero at elements a1 in J1 and a2 in J2. By hypothesis, there exists an element

y in ∂ffA
∗
1 non-zero at a1 and a2. Thus J1 and J2 are not subsets of the prime ideal

kn(ker y) (Proposition 7.14) thereby giving a contradiction.

In the remainder of this section the relationship between antiliminality and the

set of factorial functionals is investigated. Lemma 7.22 is stated in the discussion

following [19], Lemma 3.4.

Lemma 7.22 Let A be a JB*-triple and let ∂eA
∗
1 be the set of pure functionals of A.

For each element x in ∂eA
∗
1, let e(x) be the support tripotent of x, let K(c(A∗∗2 (e(x))))

be the socle of the central kernel of the Peirce-2 space of e(x) in A∗∗, let k(A∗∗0 (e(x)))

be the central kernel of the Peirce-0 space of e(x) in A∗∗, let πx be the canonical

homomorphism of A into c(A∗∗2 (e(x))) and let Cx be the norm-closed ideal of A defined

by

Cx = (K(c(A∗∗2 (e(x))))⊕ k(A∗∗0 (e(x)))) ∩ A.

Then ⋂
x∈∂eA∗1

Cx = {a ∈ A : πx(a) ∈ K(c(A∗∗2 (e(x))))∀x ∈ ∂eA∗1}

and this set is the largest liminal ideal of A.

Lemma 7.23 Let A be an antiliminal JB*-triple and adopt the notation of Lemma

7.22. Then ⋃
x∈∂eA∗1

C◦x ∩ ∂A∗1
w∗

= ∂eA∗1
w∗
.

Proof. Since A is antiliminal,
⋂
x∈∂eA∗1

Cx is zero. The result now follows as in [21],

Corollary 3.8.
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Lemma 7.24 Let A be an antiliminal JB*-triple, let ∂eA
∗
1 be the set of pure func-

tionals of A, let x be an element of ∂eA
∗
1, let Jx be the norm central kernel of x in

A and let (Jx)
◦ be the topological annihilator of Jx. Then (Jx)

◦ ∩ ∂A∗1 is a subset of

∂eA∗1
w∗

.

Proof. The argument is exactly as in the proof of [21], Theorem 5.6.

Proposition 7.25 Let A be an antiliminal JB*-triple, let ∂eA
∗
1 be the set of pure

functionals of A and let ∂fA
∗
1 be the set of factorial functionals of A. Then ∂eA

∗
1 is

w*-dense in ∂fA
∗
1.

Proof. Let x be an element of ∂ffA
∗
1. Then by Proposition 7.10, x is a convex

combination of quasi-equivalent elements x1, . . . , xn of ∂eA
∗
1. Let Jx1 be the norm

central kernel of x1. For j equal to 2, . . . , n, xj is quasi-equivalent to x1, so Jx1 is also

the norm central kernel of xj. It follows that x is an element of J◦x1 ∩ ∂A
∗
1 and, by

Lemma 7.24, of ∂eA∗1
w∗

. The result follows from Corollary 7.16.

A similar result relating pure states to factorial states is known for C*-algebras

([12], Proposition 3.1). Antiliminality is not a necessary condition for ∂eA
∗
1 to be w*-

dense in ∂fA
∗
1. By Example 7.4, [21], Corollary 4.3, and the argument of [12], Theorem

3.4, if A is a JB*-triple possessing an abelian ideal J such that A/J is antiliminal, an

infinite dimensional Hilbert space or an infinite dimensional spin triple, then ∂eA
∗
1 is

w*-dense in ∂fA
∗
1. It is not known if these sufficient conditions are necessary.

7.7 Restriction of functionals to the centralizer

Let A be a JB*-triple with centralizer Z(A). In this section a map x 7→ x̌ is defined

from A∗, the dual of A, to Z(A)∗, the dual of Z(A). The map extends the map from

∂eA
∗
1, the set of pure functionals of A, to Ω(Z(A)), the character space of Z(A), given

in Theorem 3.22. The map defined in this section is used to characterise the pure

functionals of a continuous JBW*-triple in terms of the pure states of its centralizer

in Section 7.8.
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Lemma 7.26 Let A be a JB*-triple with dual A∗ and bidual A∗∗. Let Z(A) be the

centralizer of A and let Z(A)∗+ be the positive cone in the dual of Z(A). Let x be an

element of A∗ with support tripotent e(x) in A∗∗. Define the functional x̌ on Z(A),

for T in Z(A), by

x̌(T ) = x(T ∗∗e(x)).

Then x̌ is an element of Z(A)∗+ such that

‖x̌‖ = ‖x‖.

Proof. Clearly x̌ is a linear functional on Z(A) bounded by ‖x‖. Let IdA be the unit

of Z(A). Since

x̌(IdA) = x(e(x)) = ‖x‖,

x̌ is positive on Z(A) with norm ‖x‖.

Lemma 7.27 shows how Lemma 7.26 is connected to the process of restricting

positive functionals to the centre in the unital C*-algebra case.

Lemma 7.27 Let A be a unital C*-algebra with unit 1, dual A∗ and centralizer Z(A).

Let x be an element of A∗, let |x| be the absolute value of x and let x̌ be the functional

defined on Z(A) as in Lemma 7.26. Then, for T in Z(A),

x̌(T ) = |x|(T1).

Proof. By w*-continuity of multiplication in A∗∗, the bidual of A, for a in A∗∗,

T ∗∗a = (T1)a.

Therefore, by Corollary 2.18,

x̌(T ) = x(T ∗∗e(x)) = x(e(x)T1) = |x|(T1),

as required.
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Lemma 7.28 Let A be a JB*-triple with dual A∗ and bidual A∗∗, let x be an element

of A∗ with support tripotent e(x) in A∗∗ and let x̌ be the functional defined on Z(A)

as in Lemma 7.26. Let φx be the sesquilinear map defined for a and b in A by

φx(a, b) = x({a b e(x)}).

Then, for each element T in the centralizer, Z(A), of A, with adjoint T †, and each

element a in A,

|x(Ta)|2 ≤ x̌(TT †)φx(a, a).

When x lies in the set ∂fA
∗
1 of factorial functionals of A,

x(Ta) = x̌(T )x(a).

Proof. Let x be an element of A∗, let T be an element of Z(A) and let a be an

element of A. Writing a2 for P2(e(x))a, and a
∗e(x)
2 for {e(x) a2 e(x)},

x(Ta) = x(P2(e(x))T ∗∗a) = x(T ∗∗{e(x) a
∗e(x)
2 e(x)}) = φx(T

∗∗e(x), a
∗e(x)
2 ).

Now,

φx(T
∗∗e(x), T ∗∗e(x)) = x({T ∗∗e(x)T ∗∗e(x) e(x)})

= x(T ∗∗(T ∗∗)†e(x))

= x̌(TT †),

and,

φx(a
∗e(x)
2 , a

∗e(x)
2 ) = x({{e(x) a2 e(x)} {e(x) a2 e(x)} e(x)})

= x({e(x) a2 P2(e(x))a2})

= φx(a2, a2)

≤ φx(a, a).
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Therefore, by the Schwarz inequality,

|x(Ta)|2 ≤ x̌(TT †)φx(a, a).

Now let x be an element of ∂fA
∗
1. Then A∗∗2 (e(x)) is a factor, and, hence, for T in

Z(A),

T ∗∗e(x) = x̌(T )e(x).

Therefore, using the commutativity of T ∗∗ with P2(e(x)),

x(Ta) = x(T ∗∗P2(e(x))a)

= x({T ∗∗e(x) {e(x) a e(x)} e(x)})

= x̌(T )x(a),

as required.

In particular, Lemma 7.28 shows that when A is a JB*-triple and x a pure func-

tional, the definition of x̌ given in Lemma 7.26 agrees with the definition of x̌, given

in Proposition 3.22.

Lemma 7.29 Let A be a JB*-triple, let x be an element of A∗ with support tripotent

e(x) in A∗∗ and let x̌ be the functional on the centralizer Z(A) of A defined in Lemma

7.26. Let kn(kerx) denote the norm central kernel of x in A and let ker x̌ denote the

kernel of x̌ in Z(A). Then, the following results hold.

(i) Let I be an ideal of Z(A) such that x̌ annihilates I and let I4 be the norm-closed

ideal

I4 = IA

of A. Then

I4 ⊆ kn(kerx).
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(ii) Let J be an ideal of A such that x annihilates J and let J5 be the ideal

J5 = {T ∈ Z(A) : TA ⊆ J}

of Z(A). Then

J5 ⊆ ker x̌.

Proof. (i) For T in I with adjoint T †, TT † lies in I, and, by Lemma 7.28, for all a

in A, x(Ta) is zero. The result follows.

(ii) For T in J5 and a in A, x is zero at Ta. Let (aλ) be a net in A, w*-convergent

to e(x) in A∗∗. Then (Taλ) is a net in A w*-convergent to T ∗∗e(x) and it follows that

x(T ∗∗e(x)) is zero. Therefore, T lies in ker x̌.

7.8 Pure functional space of a continuous JBW*-

triple

A JBW*-triple is said to be continuous if it contains no w*-closed ideal which is a

Type I JBW*-triple. In this section the preceding results are applied to obtain a

characterisation of the pure functional space of a continuous JBW*-triple in terms of

the pure state space of the centralizer.

Proposition 7.30 Let A be a JBW*-triple with dual A∗ and centralizer Z(A), and

let ∂fA
∗
1 be the set of factorial functionals of A. Let x be an element of ∂A∗1, the

surface of the unit ball of A∗, let kn(kerx) be the norm central kernel of x and let x̌ be

the functional defined on Z(A) as in Lemma 7.26. Then, the following are equivalent:

(i) x lies in ∂fA
∗
1

w∗
;

(ii) kn(kerx) is primal;

(iii) kn(kerx) contains a Glimm ideal;

(iv) x̌ is a character of Z(A).
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Proof. (i)⇔(ii): This follows from Corollary 7.15.

(ii)⇔(iii): This is a particular case of Proposition 6.14.

(iii)⇒(iv): Let ω be a character of Z(A) with kernel Iω in Z(A), such that the

Glimm ideal

Kω = (Iω)4 = IωA

is annihilated by x. Let K5ω be the norm-closed ideal

K5ω = {T ∈ Z(A) : TA ⊆ Kω}

of Z(A). Then, by Lemma 7.29,

Iω ⊆ K5ω ⊆ ker x̌.

For T in Z(A), T − ω(T )I lies in Iω and hence,

x̌(T ) = x̌(T − ω(T )I) + ω(T )x̌(I) = ω(T ).

Thus x̌ coincides with ω and x̌ is a character of Z(A).

(iv)⇒(iii): Suppose that x̌ is a character of Z(A) and let Ix̌ be the kernel of x̌ in

Z(A). Then, by Lemma 7.29, the Glimm ideal Ix̌A is contained in kn(kerx).

The characterisation of the pure functional space of a continuous JBW*-triple

may now be given.

Theorem 7.31 Let A be a continuous JBW*-triple with dual space A∗ and centralizer

Z(A). Let ∂A∗1 be the surface of the dual unit ball, let ∂eA
∗
1 be the set of extreme points

of the dual unit ball and let ∂eS((Z(A))) be the set of extreme points of the state space

of Z(A). For x in A∗, let x̌ be the functional defined on Z(A) in Lemma 7.26. Then

∂eA∗1
w∗ ∩ ∂A∗1 = {x ∈ ∂A∗1 : x̌ ∈ ∂eS(Z(A))}.

Proof. Let a be an abelian element of A. Then, the w*-closed inner ideal generated
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by a is a commutative W*-algebra, generated by abelian tripotents of A. Hence, any

abelian element of A is zero and A is antiliminal. By Proposition 7.25, if A is an

antiliminal JB*-triple then

∂eA∗1
w∗ ∩ ∂A∗1 = ∂fA

∗
1

w∗ ∩ ∂A∗1.

The result is now immediate from Proposition 7.30.

In the W*-algebra case, Theorem 7.31 is an order-free analogue of a characterisa-

tion of the pure state space [49], [6].
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antiliminal, 149

densely standard, 4, 84

liminal, 149

postliminal, 149

prime, 148

primitive, 3, 84

quasi-standard, 5, 85, 104

JB-algebra, 17
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projection, 10
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representation, 50, 54
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w*-representation, 50

representations

disjoint, 51

quasi-equivalent, 51

separate points, 93
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support space, 62
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Jacobson, 46

Lawson, 34
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Scott, 34

structure, 48

triple continuity structure, 87
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[40] C. M. Edwards and G. T. Rüttimann. The central hull and central kernel

in JBW∗-triples. J. Algebra, 250(1), (2002), 90–114.

[41] C. M. Edwards and G. T. Rüttimann. Faithful inner ideals in JBW∗-triples.

Results Math., 43(3-4), (2003), 245–269.

[42] J. M. G. Fell. The structure of algebras of operator fields. Acta Math., 106,

(1961), 233–280.

[43] J. M. G. Fell. A Hausdorff topology for the closed subsets of a locally compact

non-Hausdorff space. Proc. Amer. Math. Soc., 13, (1962), 472–476.

[44] Y. Friedman and B. Russo. Structure of the predual of a JBW ∗-triple. J.

Reine Angew. Math., 356, (1985), 67–89.

164



[45] Y. Friedman and B. Russo. The Gelfand-Naimark theorem for JB*-triples.

Duke Math. J., 53(1), (1986), 139–148.

[46] Y. Friedman and B. Russo. Some affine geometric aspects of operator alge-

bras. Pacific J. Math., 137(1), (1989), 123–144.

[47] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove,

and D. S. Scott. A compendium of continuous lattices. Springer-Verlag,

Berlin, 1980.

[48] L. Gillman and M. Jerison. Rings of continuous functions, Graduate Texts

in Mathematics, 43. Springer-Verlag, New York, 1976. Reprint of the 1960

edition.

[49] J. Glimm. A Stone-Weierstrass theorem for C∗-algebras. Ann. of Math. (2),

72, (1960), 216–244.

[50] H. Hanche-Olsen. Split faces and ideal structure of operator algebras. Math.

Scand., 48(1), (1981), 137–144.

[51] H. Hanche-Olsen and E. Størmer. Jordan operator algebras, Monograph

studies in mathematics, 21. Pitman (Advanced Publishing Program), Boston,

MA, 1984.

[52] P. Harmand, D. Werner, and W. Werner. M -ideals in Banach spaces and

Banach algebras, Lecture Notes in Mathematics, 1547. Springer-Verlag, Berlin,

1993.

[53] M. Henriksen, R. Kopperman, J. Mack, and D. W. B. Somerset.

Joincompact spaces, continuous lattices, and C∗-algebras. Algebra Universalis,

38(3), (1997), 289–323.

[54] G. Horn. Characterization of the predual and ideal structure of a JBW*-triple.

Math. Scand., 61(1), (1987), 117–133.

165
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